Home About us Contact | |||
Quantitative Modeling (quantitative + modeling)
Selected AbstractsQuantitative modeling of triacylglycerol homeostasis in yeast , metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growthFEBS JOURNAL, Issue 22 2008Jürgen Zanghellini Triacylglycerol metabolism in Saccharomyces cerevisiae was analyzed quantitatively using a systems biological approach. Cellular growth, glucose uptake and ethanol secretion were measured as a function of time and used as input for a dynamic flux-balance model. By combining dynamic mass balances for key metabolites with a detailed steady-state analysis, we trained a model network and simulated the time-dependent degradation of cellular triacylglycerol and its interaction with fatty acid and membrane lipid synthesis. This approach described precisely, both qualitatively and quantitatively, the time evolution of various key metabolites in a consistent and self-contained manner, and the predictions were found to be in excellent agreement with experimental data. We showed that, during pre-logarithmic growth, lipolysis of triacylglycerol allows for the rapid synthesis of membrane lipids, whereas de novo fatty acid synthesis plays only a minor role during this growth phase. Progress in triacylglycerol hydrolysis directly correlates with an increase in cell size, demonstrating the importance of lipolysis for supporting efficient growth initiation. [source] VLT-CRIRES: "Good Vibrations" Rotational-vibrational molecular spectroscopy in astronomyASTRONOMISCHE NACHRICHTEN, Issue 5 2010H.U. Käufl Abstract Near-Infrared high spectral and spatial resolution spectroscopy offers new and innovative observing opportunities for astronomy. The "traditional" benefits of IR-astronomy , strongly reduced extinction and availability of adaptive optics , more than offset for many applications the compared to CCD-based astronomy strongly reduced sensitivity. Especially in high resolution spectroscopy interferences by telluric lines can be minimized. Moreover for abundance studies many important atomic lines can be accessed in the NIR. A novel spectral feature available for quantitative spectroscopy are the molecular rotational-vibrational transitions which allow for fundamentally new studies of condensed objects and atmospheres. This is also an important complement to radio-astronomy, especially with ALMA, where molecules are generally only observed in the vibrational ground state. Rot-vib transitions also allow high precision abundance measurements , including isotopic ratios , fundamental to understand the thermo-nuclear processes in stars beyond the main sequence. Quantitative modeling of atmospheres has progressed such that the unambiguous interpretation of IR-spectra is now well established. In combination with adaptive optics spectro-astrometry is even more powerful and with VLT-CRIRES a spatial resolution of better than one milli-arcsecond has been demonstrated. Some highlights and recent results will be presented: our solar system, extrasolar planets, star- and planet formation, stellar evolution and the formation of galactic bulges (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Temperature measurements near a heating surface at high heat fluxes in subcooled pool boilingHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 1 2010Ayako Ono Abstract In previous papers (Int J Heat Mass Transfer, 2008;50:3481,3489, 2009;52: 814,821), the authors conducted measurements of liquid,vapor structures in the vicinity of a heating surface for subcooled pool boiling on an upward-facing copper surface by using a conducting probe method. We reported that the macrolayer dryout model is the most appropriate model of the CHF and that the reason why the CHF increases with increasing subcooling is most likely that a thick macrolayer is able to form beneath large vapor masses and the lowest heat flux of the vapor mass region shifts towards the higher heat flux. To develop a mechanistic model of the CHF for subcooled boiling, therefore, it is necessary to elucidate the effects of local subcooling on boiling behaviors in the vicinity of a heating surface. This paper measured local temperatures close to a heating surface using a micro-thermocouple at high heat fluxes for water boiling on an upward-facing surface in the 0 to 40 K range of subcooling. A value for the effective subcooling, defined as the local subcooling during the period while vapor masses are being formed was estimated from the detected bottom peaks of the temperature fluctuations. It was established that the effective subcooling adjacent to the surface remains at considerably lower values than the bulk liquid subcooling. This suggests that, from nucleation to coalescence, the subcooling of a bulk liquid has a smaller effect on the behavior of primary bubbles than the extent of the subcooling would appear to suggest. An empirical correlation of the effective subcooling is proposed to provide a step towards quantitative modeling of the CHF for subcooled boiling. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20277 [source] A review of the road safety strategy in hong kongJOURNAL OF ADVANCED TRANSPORTATION, Issue 1 2007Becky P. Y. Loo Abstract Since the mid-1990s, the effectiveness of road safety measures in Hong Kong has been weakening. Six administrations in Australia, California, Great Britain (GB), Japan, New Zealand and Sweden are selected to help review the road safety activities in Hong Kong. Nine main components of the road safety strategy, including vision, objectives, targets, action plan, evaluation and monitoring, research and development, quantitative modeling, institutional framework and funding are summarized from the road safety strategies of these overseas administrations and compared to that of Hong Kong. It is found that Hong Kong's road safety activities have to be restructured to make significant improvement. In the future, a new approach structured by the nine different road safety components is recommended. The lessons learnt can be generalized to smooth the progress of other administrations at the Intermediate Stage towards the Advanced Stage of road safety development by using the short-, medium- and long-term approaches. [source] Density functional theory for chemical engineering: From capillarity to soft materialsAICHE JOURNAL, Issue 3 2006Jianzhong Wu Abstract Understanding the microscopic structure and macroscopic properties of condensed matter from a molecular perspective is important for both traditional and modern chemical engineering. A cornerstone of such understanding is provided by statistical mechanics, which bridges the gap between molecular events and the structural and physiochemical properties of macro- and mesoscopic systems. With ever-increasing computer power, molecular simulations and ab initio quantum mechanics are promising to provide a nearly exact route to accomplishing the full potential of statistical mechanics. However, in light of their versatility for solving problems involving multiple length and timescales that are yet unreachable by direct simulations, phenomenological and semiempirical methods remain relevant for chemical engineering applications in the foreseeable future. Classical density functional theory offers a compromise: on the one hand, it is able to retain the theoretical rigor of statistical mechanics and, on the other hand, similar to a phenomenological method, it demands only modest computational cost for modeling the properties of uniform and inhomogeneous systems. Recent advances are summarized of classical density functional theory with emphasis on applications to quantitative modeling of the phase and interfacial behavior of condensed fluids and soft materials, including colloids, polymer solutions, nanocomposites, liquid crystals, and biological systems. Attention is also given to some potential applications of density functional theory to material fabrications and biomolecular engineering. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source] The petrogenesis of type B1 Ca-Al-rich inclusions: The spinel perspectiveMETEORITICS & PLANETARY SCIENCE, Issue 2 2003Harold C. CONNOLLY Jr. These correlations result from a combination of crystallization of a liquid produced by re-melting event(s) and local re-equilibration during subsolidus reheating. The correlation of the Ti and V in spinel inclusions with the Ti and V in the adjacent host clinopyroxene can be qualitatively explained by spinel and clinopyroxene crystallization prior to melilite, following a partial melting event. There are, however, difficulties in quantitative modeling of the observed trends, and it is easier to explain the Ti correlation in terms of complete re-equilibration. The correlation of V in spinel inclusions with that in the adjacent host clinopyroxene also cannot be quantitatively modeled by fractional crystallization of the liquid produced by re-melting, but it can be explained by partial re-equilibration. The distinct V and Ti concentrations in spinel inclusions in melilite from the edge regions of the CAI are best explained as being affected by only a minor degree of re-equilibration. The center melilites and included spinels formed during crystallization of the liquid produced by re-melting, while the edge melilites and included spinels are primary. The oxygen isotope compositions of TS-34 spinels are uniformly 16O-rich, regardless of the host silicate phase or its location within the inclusion. Similar to other type B1 CAIs, clinopyroxene is 16O-rich, but melilite is relatively 16O-poor. These data require that the oxygen isotope exchange in TS-34 melilite occurred subsequent to the last re-melting event. [source] Characterization of BOLD activation in multi-echo fMRI data using fuzzy cluster analysis and a comparison with quantitative modelingNMR IN BIOMEDICINE, Issue 7-8 2001Markus Barth Abstract A combination of multiple gradient-echo imaging and exploratory data analysis (EDA), i.e. fuzzy cluster analysis (FCA), is proposed for separation and characterization of BOLD activation in single-shot spiral functional magnetic resonance imaging (fMRI) experiments at 3 T. Differentiation of functional activation using FCA is performed by clustering pixel signal changes (,S) as a function of echo time (TE). Further vascular classification is supported by the localization of activation and the comparison with a single-exponential decay model. In some subjects, an additional indication for large vessels within a voxel was found as oscillation of the fMRI signal difference vs echo time (TE). Such large vessels may be separated from small vessel activation and, therefore, our proposed procedure might prove useful if a more specific functional localization is desired in fMRI. In addition to the signal change ,S, ,T2*/T2* is significantly different between activated regions. Averaged over all eight subjects ,T2* is 1.7,±,0.2,ms in ROIs with the highest signal change characterized as containing large vessels, whereas in ROIs corresponding to microvascular environment average ,T2* values are 0.8,±,0.1,ms. Copyright © 2001 John Wiley & Sons, Ltd. [source] Putting numbers on the network connectionsBIOESSAYS, Issue 8 2007Gary D. Stormo DNA,protein interactions are fundamental to many biological processes, including the regulation of gene expression. Determining the binding affinities of transcription factors (TFs) to different DNA sequences allows the quantitative modeling of transcriptional regulatory networks and has been a significant technical challenge in molecular biology for many years. A recent paper by Maerkl and Quake1 demonstrated the use of microfluidic technology for the analysis of DNA,protein interactions. An array of short DNA sequences was spotted onto a glass slide, which was then covered with a microfluidic device allowing each spot to be within a chamber into which the flow of materials was controlled by valves. By trapping the DNA,protein complexes on the surface and measuring their concentrations microscopically, they could determine the binding affinity to a large number of DNA sequences that were varied systematically. They studied four TFs from the basic helix,loop,helix family of proteins, all of which bind to E-box sites with the consensus CAnnTG (where "n" can be any base), and showed that variations in affinity for different sites allows each TF to regulate different genes. BioEssays 29:717,721, 2007. © 2007 Wiley Periodicals, Inc. [source] |