Quaking Aspen (quaking + aspen)

Distribution by Scientific Domains


Selected Abstracts


POSTFIRE SUCCESSION IN AN ADIRONDACK FOREST,

GEOGRAPHICAL REVIEW, Issue 4 2007
Susy Svatek Ziegler
ABSTRACT. Landscape diversity has increased with the surprising postfire establishment of aspen at upper elevations (700,945 meters above sea level) in the High Peaks of Adirondack Park in upstate New York. Tree seedlings returned quickly to the charred slopes west of Noonmark Mountain after an accidental fire consumed the forest in 1999. Aspen stands have replaced the spruce-fir-birch forests in the burned area even though mountain paper birch is expected to colonize burned sites at these elevations. Environmental conditions, historical events, and unique circumstances help explain why quaking aspen and bigtooth aspen rather than paper birch blanket the burned mountainside. Climate change over the past century to warmer, wetter conditions may have fostered this marked shift in species composition. In the unburned firebreak that people cleared to contain the flames, pin cherry has regenerated from seeds stored in the soil for nearly a century. The history of pin cherry on the site suggests that large fires or severe windthrow may have been more common in the region than was previously documented. [source]


Response of quaking aspen genotypes to enriched CO2: foliar chemistry and tussock moth performance

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2002
Richard L. Lindroth
Abstract 1Genetic variation in the phytochemical responses of plants to CO2 enrichment is likely to alter trophic dynamics, and to shift intraspecific selection pressures on plant populations. We evaluated the independent and interactive effects of atmospheric CO2 and quaking aspen (Populus tremuloides Michx.) genotype on chemical composition of foliage and performance of the whitemarked tussock moth (Orgyia leucostigma J. E. Sm.). 2This research was conducted at the Aspen FACE (Free Air CO2 Enrichment) site in northern Wisconsin, U.S.A. Leaf samples were collected periodically from each of three genetically variable aspen genotypes growing under ambient and elevated CO2, and analysed for levels of primary and secondary metabolites. Tussock moth larvae were reared in situ on experimental trees, and development times and pupal masses were recorded. 3Foliar chemical composition varied among aspen genotypes and in response to CO2 enrichment. However, chemical responses of trees to elevated CO2 were generally consistent across genotypes. 4Larval development times varied among host genotypes and increased slightly for insects on high-CO2 plants. Enriched CO2 tended to reduce insect pupal masses, particularly for females on one of the three aspen genotypes. 5CO2 × genotype interactions observed for plant chemistry and insect performance in this study with a small number of genotypes are probably too few, and too weak, to shift selection pressures in aspen populations. These results differ, however, from earlier work in which more substantial CO2 × genotype interactions were observed for plant chemistry. [source]


Aspen succession and nitrogen loading: a case for epiphytic lichens as bioindicators in the Rocky Mountains, USA

JOURNAL OF VEGETATION SCIENCE, Issue 3 2009
Paul C. Rogers
Abstract Question: Can lichen communities be used to assess short- and long-term factors affecting seral quaking aspen (Populus tremuloides) communities at the landscape scale? Location: Bear River Range, within the Rocky Mountains, in northern Utah and southern Idaho, USA. Method: Forty-seven randomly selected mid-elevation aspen stands were sampled for lichens and stand conditions. Plots were characterized according to tree species cover, basal area, stand age, bole scarring, tree damage, and presence of lichen species. We also recorded ammonia emissions with passive sensors at 25 urban and agricultural sites throughout an adjacent populated valley upwind of the forest stands. Nonmetric multidimensional scaling (NMS) ordination was used to evaluate an array of 20 variables suspected to influence lichen communities. Results: In NMS, forest succession explained most variance in lichen composition and abundance, although atmospheric nitrogen from local agricultural and urban sources also significantly influenced the lichen communities. Abundance of nitrophilous lichen species decreased with distance from peak ammonia sources and the urban center in all aspen succession classes. One lichen, Phaeophyscia nigricans, was found to be an effective bioindicator of nitrogen loading. Conclusions: Lichen communities in this landscape assessment of aspen forests showed clear responses to long-term (stand succession) and short-term (nitrogen deposition) influences. At the same time, several environmental factors (e.g. tree damage and scarring, distance to valley, topography, and stand age) had little influence on these same lichen communities. We recommend further use of epiphytic lichens as bioindicators of dynamic forest conditions. [source]


Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy,

MAGNETIC RESONANCE IN CHEMISTRY, Issue 6 2008
Daniel J. Yelle
Abstract A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide- d6 and 1-methylimidazole- d6 in a ratio of 4:1 (v/v), keeping wood component structures mainly intact in their near-native state. Two-dimensional NMR experiments, using gradient-HSQC (heteronuclear single quantum coherence) 1-bond 13C1H correlation spectroscopy, on nonderivatized cell wall material from a representative gymnosperm pinus taeda (loblolly pine), an angiosperm Populus tremuloides (quaking aspen), and a herbaceous plant Hibiscus cannabinus (kenaf) demonstrate the efficacy of the system. We describe a method to synthesize 1-methylimidazole- d6 with a high degree of perdeuteration, thus allowing cell wall dissolution and NMR characterization of nonderivatized plant cell wall structures. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Effects of CO2 and light on tree phytochemistry and insect performance

OIKOS, Issue 2 2000
Jep Agrell
Direct and interactive effects of CO2 and light on tree phytochemistry and insect fitness parameters were examined through experimental manipulations of plant growth conditions and performance of insect bioassays. Three species of deciduous trees (quaking aspen, Populus tremuloides; paper birch, Betula papyrifera; sugar maple, Acer saccharum) were grown under ambient (387±8 ,L/L) and elevated (696±2 ,L/L) levels of atmospheric CO2, with low and high light availability (375 and 855 ,mol×m,2×s,1 at solar noon). Effects on the population and individual performance of a generalist phytophagous insect, the white-marked tussock moth (Orgyia leucostigma) were evaluated. Caterpillars were reared on experimental trees for the duration of the larval stage, and complementary short-term (fourth instar) feeding trials were conducted with insects fed detached leaves. Phytochemical analyses demonstrated strong effects of both CO2 and light on all foliar nutritional variables (water, starch and nitrogen). For all species, enriched CO2 decreased water content and increased starch content, especially under high light conditions. High CO2 availability reduced levels of foliar nitrogen, but effects were species specific and most pronounced for high light aspen and birch. Analyses of secondary plant compounds revealed that levels of phenolic glycosides (salicortin and tremulacin) in aspen and condensed tannins in birch and maple were positively influenced by levels of both CO2 and light. In contrast, levels of condensed tannins in aspen were primarily affected by light, whereas levels of ellagitannins and gallotannins in maple responded to light and CO2, respectively. The long-term bioassays showed strong treatment effects on survival, development time, and pupal mass. In general, CO2 effects were pronounced in high light and decreased along the gradient aspen birch maple. For larvae reared on high light aspen, enriched CO2 resulted in 62% fewer survivors, with increased development time, and reduced pupal mass. For maple-fed insects, elevated CO2 levels had negative effects on survival and pupal mass in low light. For birch, the only negative CO2 effects were observed in high light, where female larvae showed prolonged development. Fourth instar feeding trials demonstrated that low food conversion efficiency reduced insect performance. Elevated levels of CO2 significantly reduced total consumption, especially by insects on high light aspen and low light maple. This research demonstrates that effects of CO2 on phytochemistry and insect performance can be strongly light-dependent, and that plant responses to these two environmental variables differ among species. Overall, increased CO2 availability appeared to increase the defensive capacity of early-successional species primarily under high light conditions, and of late-successional species under low light conditions. Due to the interactive effects of tree species, light, CO2, and herbivory, community composition of forests may change in the future. [source]