Home About us Contact | |||
QT Interval Measurement (qt + interval_measurement)
Selected AbstractsOld Habits Die Hard: The Quest for Correct(ed) QT Interval MeasurementsJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2010DANIELA HUSSER M.D. No abstract is available for this article. [source] The Measurement of the QT and QTc on the Neonatal and Infant Electrocardiogram: A Comprehensive Reliability AssessmentANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 2 2009B.S., Robert M. Gow M.B. Background: An electrocardiogram has been proposed to screen for prolonged QT interval that may predispose infants to sudden death in the first year of life. Understanding the reliability of QT interval measurement will inform the design of a screening program. Methods: Three pediatric cardiologists measured the QT/RR intervals on 60 infant electrocardiograms (median age 46 days), from leads II, V5 and V6 on three separate occasions, 7 days apart, according to a standard protocol. The QTc was corrected by Bazett's (QTcB), Fridericia's (QTCFrid), and Hodges' (QTcH) formulae. Intraobserver and interobserver reliability were assessed by intraclass correlation coefficients (ICC), limits of agreement and repeatability coefficients for single, average of two and average of three measures. Agreement for QTc prolongation (> 440 msec) was assessed by kappa coefficients. Results: QT interval intraobserver ICC was 0.86 and repeatability coefficient was 25.9 msec; interobserver ICC increased from 0.88 for single observations to 0.94 for the average of 3 measurements and repeatability coefficients decreased from 22.5 to 16.7 msec. For QTcB, intraobserver ICC was 0.67, and repeatability was 39.6 msec. Best interobserver reliability for QTcB was for the average of three measurements (ICC 0.83, reproducibility coefficient 25.8 msec), with further improvement for QTcH (ICC 0.92, reproducibility coefficient 16.69 msec). Maximum interobserver kappa for prolonged QTc was 0.77. Misclassification around specific cut points occurs because of the repeatability coefficients. Conclusions: Uncorrected QT measures are more reliable than QTcB and QTCFrid. An average of three independent measures provides the most reliable QT and QTc measurements, with QTcH better than QTcB. [source] Robust QT Interval Estimation,From Algorithm to ValidationANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 2009Joel Q. Xue Ph.D. Background: This article presents an effort of measuring QT interval with automatic computerized algorithms. The aims of the algorithms are consistency as well as accuracy. Multilead and multibeat information from a given segment of ECG are used for more consistent QT interval measurement. Methods: A representative beat is generated from selected segment of each lead, and then a composite beat is formed by the representative beats of all independent leads. The end result of the QT measure is so-called global QT measurement, which usually correlates with the longest QT interval in multiple leads. Individual lead QT interval was estimated by using the global measurement as a starting point, and then adapted to the signal of the particular lead and beat. In general, beat-by-beat QT measurement is more prone to noise, therefore less reliable than the global estimation. It is usually difficult to know if difference of beat-by-beat QT interval is due to true physiological change or noise fluctuation. Results: The algorithm was tested independently by a clinical database. It is also tested against action potential duration (APD) generated by a Cell-to-ECG forward-modeling based simulation signals. The modeling approach provided an objective test for the QT estimation. The modeling approach allowed us to evaluate the QT measurement versus APD. The mean error between the algorithm and cardiologist QT intervals is 3.95 ± 5.5 ms, based on the large clinical trial database consisting of 15,910 ECGs. The mean error between QT intervals and maximum APD is 17 ± 2.4, and the correlation coefficient is 0.99. Conclusions: The global QT interval measurement method presented in this study shows very satisfactory results against the CSE database and a large clinical trial database. The modeling test approach used in this study provides an alternative "gold standard" for QT interval measurement. [source] Comparing Methods of Measurement for Detecting Drug-Induced Changes in the QT Interval: Implications for Thoroughly Conducted ECG StudiesANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 2 2004Nkechi E. Azie M.D. Background:,The aim of this study was to compare the reproducibility and sensitivity of four commonly used methods for QT interval assessment when applied to ECG data obtained after infusion of ibutilide. Methods:,Four methods were compared: (1) 12-lead simultaneous ECG (12-SIM), (2) lead II ECG (LEAD II), both measured on a digitizing board, (3) 3-LEAD ECG using a manual tangential method, and (4) a computer-based, proprietary algorithm, 12SLÔ ECG Analysis software (AUT). QT intervals were measured in 10 healthy volunteers at multiple time points during 24 hours at baseline and after single intravenous doses of ibutilide 0.25 and 0.5 mg. Changes in QT interval from baseline were calculated and compared across ECG methods, using Bland,Altman plots. Variability was studied using a mixed linear model. Results:,Baseline QT values differed between methods (range 376,395 ms), mainly based on the number of leads incorporated into the measurement, with LEAD II and 3-LEAD providing the shortest intervals. The 3-LEAD generated the largest QT change from baseline, whereas LEAD II and 12-SIM generated essentially identical result within narrow limits of agreement (0.4 ms mean difference, 95% confidence interval ± 20.5 ms). Variability with AUT (standard deviation 15.8 ms for within-subject values) was clearly larger than with 3-LEAD, LEAD II, and 12-SIM (9.6, 10.0, and 11.3 ms). Conclusion:,This study demonstrated significant differences among four commonly used methods for QT interval measurement after pharmacological prolongation of cardiac repolarization. Observed large differences in variability of measurements will have a substantial impact on the sample size required to detect QT prolongation in the range that is currently advised in regulatory guidance. [source] Effect of single doses of maraviroc on the QT/QTc interval in healthy subjectsBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 2008John D. Davis AIMS To assess the effect of a single dose of maraviroc on the QTc interval in healthy subjects and to evaluate the QTc interval,concentration relationship. METHODS A single-dose, placebo- and active-controlled, five-way crossover study was conducted to investigate the effects of maraviroc (100, 300, 900 mg) on QTc in healthy subjects. Moxifloxacin (400 mg) was used as the active comparator. The study was double-blind with respect to maraviroc/placebo and open label for moxifloxacin. There was a 7-day wash-out period between each dose. QT interval measurements obtained directly from the electrocardiogram (ECG) recorder were corrected for heart rate using Fridericia's correction (QTcF). A placebo run-in day was conducted before period 3, when ECGs were collected at intervals while subjects were resting or during exercise. These ECGs plus other predose ECGs were used to evaluate the QT/RR relationship for each subject to enable calculation of an individual's heart rate correction for their QT measurements (QTcI). ECGs were taken at various intervals pre- and postdose in each study period. Pharmacokinetic parameters were determined for each maraviroc dose. The end-points that were evaluated were QTcF at median time to maximum concentration (Tmax) based on the machine readings and QTcI at median Tmax based on manual over-reads of the QT/RR data. A separate analysis of variance was used for each of the pair-wise comparisons for each end-point. The relationship between QTc interval and plasma concentration was also investigated using a mixed-effects modelling approach, as implemented by the NONMEM software system. A one-stage model was employed in which the relationship between QT and RR and the effects of maraviroc plasma concentration on QT were estimated simultaneously. RESULTS The mean difference from placebo in machine-read QTcF at median Tmax for maraviroc 900 mg was 3.6 ms [90% confidence interval (CI) 1.5, 5.8]. For the active comparator, moxifloxacin, the mean difference from placebo in machine-read QTcF was 13.7 ms. The changes from placebo for each of the end-points were similar for men and women. No subjects receiving maraviroc or placebo had a QTcF ,,450 ms (men) or QTcF ,,470 ms (women), nor did any subject experience a QTcF increase ,,60 ms from baseline at any time point. Analysis based on the QTcI data obtained from the manual over-readings of the ECGs gave numerically very similar results. The QT:RR relationship was similar pre- and postdose and was not related to maraviroc concentration. The population estimate of the QT:RR correction factor was 0.324 (95% CI 0.309, 0.338). The population estimate of the slope describing the QT,concentration relationship was 0.97 ,s ml ng,1 (95% CI ,0.571, 2.48), equivalent to an increase of 0.97 ms in QT per 1000 ng maraviroc plasma concentration. Most adverse events were mild to moderate in severity. CONCLUSIONS Single doses of maraviroc, up to and including 900 mg, had no clinically relevant effect on QTcF or QTcI. At all maraviroc doses and for both end-points, the mean difference from placebo for QTc was <4 ms. There was no apparent relationship between QT interval and maraviroc plasma concentration up to 2363 ng ml,1. This conclusion held in both male and female subjects, and there was no evidence of a change in the QT/RR relationship with concentration. [source] |