Home About us Contact | |||
QoI Resistance (qoi + resistance)
Selected AbstractsModeling the Qo site of crop pathogens in Saccharomyces cerevisiae cytochrome bFEBS JOURNAL, Issue 11 2004Nicholas Fisher Saccharomyces cerevisiae has been used as a model system to characterize the effect of cytochrome b mutations found in fungal and oomycete plant pathogens resistant to Qo inhibitors (QoIs), including the strobilurins, now widely employed in agriculture to control such diseases. Specific residues in the Qo site of yeast cytochrome b were modified to obtain four new forms mimicking the Qo binding site of Erysiphe graminis, Venturia inaequalis, Sphaerotheca fuliginea and Phytophthora megasperma. These modified versions of cytochrome b were then used to study the impact of the introduction of the G143A mutation on bc1 complex activity. In addition, the effects of two other mutations F129L and L275F, which also confer levels of QoI insensitivity, were also studied. The G143A mutation caused a high level of resistance to QoI compounds such as myxothiazol, axoxystrobin and pyraclostrobin, but not to stigmatellin. The pattern of resistance conferred by F129L and L275F was different. Interestingly G143A had a slightly deleterious effect on the bc1 function in V. inaequalis, S. fuliginea and P. megasperma Qo site mimics but not in that for E. graminis. Thus small variations in the Qo site seem to affect the impact of the G143A mutation on bc1 activity. Based on this observation in the yeast model, it might be anticipated that the G143A mutation might affect the fitness of pathogens differentially. If so, this could contribute to observed differences in the rates of evolution of QoI resistance in fungal and oomycete pathogens. [source] Characterisation of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberryPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 8 2009Hideo Ishii Abstract BACKGROUND: In 2004, field isolates of Botrytis cinerea Pers. ex Fr., resistant to strobilurin fungicides (QoIs), were first found in commercial citrus orchards in Wakayama Prefecture, Japan. Subsequently, QoI-resistant isolates of this fungus were also detected in plastic strawberry greenhouses in Saga, Ibaraki and Chiba prefectures, Japan. Biological and molecular characterisation of resistant isolates was conducted in this study. RESULTS: QoI-resistant isolates of B. cinerea grew well on PDA plates containing kresoxim-methyl or azoxystrobin at 1 mg L,1, supplemented with 1 mM of n -propyl gallate, an inhibitor of alternative oxidase, whereas the growth of sensitive isolates was strongly suppressed. Results from this in vitro test were in good agreement with those of fungus inoculation tests in vivo. In resistant isolates, the mutation at amino acid position 143 of the cytochrome b gene, known to be the cause of high QoI resistance in various fungal pathogens, was found, but only occasionally. The heteroplasmy of cytochrome b gene was confirmed, and the wild-type sequence often present in the majority of resistant isolates, indicating that the proportion of mutated cytochrome b gene was very low. CONCLUSION: The conventional RFLP and sequence analyses of PCR-amplified cytochrome b gene are insufficient for molecular identification of QoI resistance in B. cinerea. Copyright © 2009 Society of Chemical Industry [source] Are some diseases unlikely to develop QoI resistance?PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 3 2007Derek Hollomon Technical Editor Pest Management Science No abstract is available for this article. [source] Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides,,PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 9 2002Ulrich Gisi Abstract Fungicides inhibiting the mitochondrial respiration of plant pathogens by binding to the cytochrome bc1 enzyme complex (complex III) at the Qo site (Qo inhibitors, QoIs) were first introduced to the market in 1996. After a short time period, isolates resistant to QoIs were detected in field populations of a range of important plant pathogens including Blumeria graminis Speer f sp tritici, Sphaerotheca fuliginea (Schlecht ex Fr) Poll, Plasmopara viticola (Berk & MA Curtis ex de Bary) Berl & de Toni, Pseudoperonospora cubensis (Berk & MA Curtis) Rost, Mycosphaerella fijiensis Morelet and Venturia inaequalis (Cooke) Wint. In most cases, resistance was conferred by a point mutation in the mitochondrial cytochrome b (cyt b) gene leading to an amino-acid change from glycine to alanine at position 143 (G143A), although additional mutations and mechanisms have been claimed in a number of organisms. Transformation of sensitive protoplasts of M fijiensis with a DNA fragment of a resistant M fijiensis isolate containing the mutation yielded fully resistant transformants, demonstrating that the G143A substitution may be the most powerful transversion in the cyt b gene conferring resistance. The G143A substitution is claimed not to affect the activity of the enzyme, suggesting that resistant individuals may not suffer from a significant fitness penalty, as was demonstrated in B graminis f sp tritici. It is not known whether this observation applies also for other pathogen species expressing the G143A substitution. Since fungal cells contain a large number of mitochondria, early mitotic events in the evolution of resistance to QoIs have to be considered, such as mutation frequency (claimed to be higher in mitochondrial than nuclear DNA), intracellular proliferation of mitochondria in the heteroplasmatic cell stage, and cell to cell donation of mutated mitochondria. Since the cyt b gene is located in the mitochondrial genome, inheritance of resistance in filamentous fungi is expected to be non-Mendelian and, therefore, in most species uniparental. In the isogamous fungus B graminis f sp tritici, crosses of sensitive and resistant parents yielded cleistothecia containing either sensitive or resistant ascospores and the segregation pattern for resistance in the F1 progeny population was 1:1. In the anisogamous fungus V inaequalis, donation of resistance was maternal and the segregation ratio 1:0. In random mating populations, the sex ratio (mating type distribution) is generally assumed to be 1:1. Therefore, the overall proportion of sensitive and resistant individuals in unselected populations is expected to be 1:1. Evolution of resistance to QoIs will depend mainly on early mitotic events; the selection process for resistant mutants in populations exposed to QoI treatments may follow mechanisms similar to those described for resistance controlled by single nuclear genes in other fungicide classes. It will remain important to understand how the mitochondrial nature of QoI resistance and factors such as mutation, recombination, selection and migration might influence the evolution of QoI resistance in different plant pathogens. © 2002 Society of Chemical Industry [source] Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b genePLANT PATHOLOGY, Issue 1 2009S. Banno Botrytis cinerea field isolates collected in Japan were screened for resistance to Qo inhibitor fungicides (QoIs). Of the 198 isolates screened, six grew well on a medium containing azoxystrobin, a QoI, when salicylhydroxamic acid, an alternative oxidase inhibitor, was present. The resistance mutation in the cytochrome b gene (cytb) was characterized. All QoI-resistant isolates had the same mutation (GGT to GCT) in cytb that led to the substitution of glycine by alanine at position 143 of cytochrome b, which is known to confer QoI resistance in plant pathogens. To detect this mutation, a hybridization probe assay based on real-time PCR amplification and melting curve analysis was developed. Using DNA samples prepared from aubergines coinfected with QoI-resistant and QoI-sensitive B. cinerea isolates, two similar peak profiles with their corresponding melting temperatures were obtained. This result suggests that QoI-resistant and QoI-sensitive isolates may compete equally in terms of pathogenicity, and the assay may be used to assess the population ratio of mutant and wild-type isolates. However, the hybridization probe did not anneal to PCR products derived from the DNA samples of some QoI-sensitive isolates. Structural analysis of cytb revealed that B. cinerea field isolates could be classified into two groups: one with three introns and the other with an additional intron (Bcbi-143/144 intron) inserted between the 143rd and 144th codons. All 88 isolates possessing the Bcbi-143/144 intron were azoxystrobin-sensitive, suggesting that the QoI-resistant mutation at codon 143 in cytb prevents self-splicing of the Bcbi-143/144 intron, as proposed in some other plant pathogens. [source] |