Q10

Distribution by Scientific Domains

Kinds of Q10

  • coenzyme q10

  • Terms modified by Q10

  • q10 value

  • Selected Abstracts


    Maternal transmission of diabetes

    DIABETIC MEDICINE, Issue 2 2002
    J. C. Alcolado
    Abstract Type 2 diabetes mellitus represents a heterogeneous group of conditions characterized by impaired glucose homeostasis. The disorder runs in families but the mechanism underlying this is unknown. Many, but not all, studies have suggested that mothers are excessively implicated in the transmission of the disorder. A number of possible genetic phenomena could explain this observation, including the exclusively maternal transmission of mitochondrial DNA (mtDNA). It is now apparent that mutations in mtDNA can indeed result in maternally inherited diabetes. Although several mutations have been implicated, the strongest evidence relates to a point substitution at nucleotide position 3243 (A to G) in the mitochondrial tRNAleu(UUR) gene. Mitochondrial diabetes is commonly associated with nerve deafness and often presents with progressive non-autoimmune ,-cell failure. Specific treatment with Coenzyme Q10 or L-carnitine may be beneficial. Several rodent models of mitochondrial diabetes have been developed, including one in which mtDNA is specifically depleted in the pancreatic islets. Apart from severe, pathogenic mtDNA mutations, common polymorphisms in mtDNA may contribute to variations of insulin secretory capacity in normal individuals. Mitochondrial diabetes accounts for less than 1% of all diabetes and other mechanisms must underlie the maternal transmission of Type 2 diabetes. Possibilities include the role of maternally controlled environments, imprinted genes and epigenetic phenomena. [source]


    Manometric study in Kearns,Sayre syndrome

    DISEASES OF THE ESOPHAGUS, Issue 1 2001
    K. H. Katsanos
    Although swallowing difficulties have been described in patients with Kearns,Sayre syndrome (KSS), the spectrum of manometric characteristics of dysphagia is not yet well known. Moreover, it is conceivable that a combination of various degrees of swallowing difficulties with different patterns in manometric studies exist, each playing a major role in the prognosis, natural history, and quality of life of KSS patients. An 18-year-old girl diagnosed at the age of 5 years with KSS (muscle biopsy) was admitted to our department with an upper respiratory tract infection and dysphagia. Clinical examination revealed growth retardation, external ophthalmoplegia, pigmentary retinopathy, impaired hearing, and ataxia. An electrocardiogram revealed cardiac conduction defects (long Q-T), and brain magnetic resonance imaging showed abnormalities in the cerebellar hemispheres. A manometric and motility study for dysphagia was conducted and the pharynx and upper esophageal sphincter (UES) resting pressures were similar to control group values, but the swallowing peak contraction pressure of the pharynx and the closing pressure of the UES were very low and could not promote effective peristaltic waves. Relaxation and coordination of the UES were not affected although pharyngeal and upper esophagus peristaltic waves proved to be very low and, consequently, were practically ineffective. The patient was started on treatment comprising a diet rich in potassium, magnesium, and calcium, and oral administration of vitamin D and co-enzyme Q10 100 mg daily; she was discharged 6 days later with apparent clinical improvement. [source]


    Coenzyme Q10 and vitamin E deficiency in Friedreich's ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 12 2008
    J. M. Cooper
    Background and purpose:, A pilot study of high dose coenzyme Q10 (CoQ10)/vitamin E therapy in Friedreich's ataxia (FRDA) patients resulted in significant clinical improvements in most patients. This study investigated the potential for this treatment to modify clinical progression in FRDA in a randomized double blind trial. Methods:, Fifty FRDA patients were randomly divided into high or low dose CoQ10/ vitamin E groups. The change in International Co-operative Ataxia Ratings Scale (ICARS) was assessed over 2 years as the primary end-point. A post hoc analysis was made using cross-sectional data. Results:, At baseline serum CoQ10 and vitamin E levels were significantly decreased in the FRDA patients (P < 0.001). During the trial CoQ10 and vitamin E levels significantly increased in both groups (P < 0.01). The primary and secondary end-points were not significantly different between the therapy groups. When compared to cross-sectional data 49% of all patients demonstrated improved ICARS scores. This responder group had significantly lower baseline serum CoQ10 levels. Conclusions:, A high proportion of FRDA patients have a decreased serum CoQ10 level which was the best predictor of a positive clinical response to CoQ10/vitamin E therapy. Low and high dose CoQ10/vitamin E therapies were equally effective in improving ICARS scores. [source]


    Noxious heat-induced CGRP release from rat sciatic nerve axons in vitro

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2001
    S. K. Sauer
    Abstract Noxious heat may act as an endogenous activator of the ionotropic capsaicin receptor (VR1) and of its recently found homologue VRL1, expressed in rat dorsal root ganglion cells and present along their nerve fibres. We have previously reported that capsaicin induces receptor-mediated and Ca++ -dependent calcitonin gene-related peptide (CGRP) release from axons of the isolated rat sciatic nerve. Here we extended the investigation to noxious heat stimulation and the transduction mechanisms involved. Heat stimulation augmented the CGRP release from desheathed sciatic nerves in a log,linear manner with a Q10 of ,,15 and a threshold between 40 and 42 °C. The increases were 1.75-fold at 42 °C, 3.8-fold at 45 °C and 29.1-fold at 52 °C; in Ca++ -free solution these heat responses were abolished or reduced by 71 and 92%, respectively. Capsazepine (10 µm) and Ruthenium Red (1 µm) used as capsaicin receptor/channel antagonists did not significantly inhibit the heat-induced release. Pretreatment of the nerves with capsaicin (100 µm for 30 min) caused complete desensitization to 1 µm capsaicin, but a significant heat response remained, indicating that heat sensitivity is not restricted to capsaicin-sensitive fibres. The sciatic nerve axons responded to heat, potassium and capsaicin stimulation with a Ca++ -dependent CGRP release. Blockade of the capsaicin receptor/channels had little effect on the heat-induced neuropeptide release. We conclude therefore that other heat-activated ion channels than VR1 and VRL1 in capsaicin-sensitive and -insensitive nerve fibres may cause excitation, axonal Ca++ influx and subsequent CGRP release. [source]


    Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2005
    A. Rey
    Summary We examined the relationship between carbon mineralization (Cmin), moisture and temperature in a Mediterranean forest soil under controlled and field conditions. We studied the following. 1,The temperature sensitivity at three soil depths: soil samples were incubated at 4, 10, 20 and 30°C at optimal water content of 60% of water holding capacity (WHC). Values of Cmin of the top layer were more than 12 times faster than those measured in deeper layers. We found a temperature sensitivity factor (Q10) of 3.3, 2.7 and 2.2 for the 0,5 cm, 5,10 cm and 10,20 cm layers, respectively. 2,The relationship between Cmin, moisture and temperature (top layer). The sensitivity of Cmin to fluctuating moisture depended on temperature. However, the Q10 was not significantly affected by soil moisture. We fitted a multiple polynomial model that predicted Cmin as a multiplicative function of temperature and moisture (R2 > 0.99). 3,The response of Cmin of soil to rewetting after 1 and 24 hours. In all cases, the response was rapid. The soil incubated at 60% WHC or less responded positively to a sudden increase in water content, with the largest increase in the 20% WHC treatment. The model predicted Cmin in the field well when rewetting effects were taken into account (R2 > 0.81). These results indicate that sudden changes in soil moisture can lead to increased carbon mineralization during the dry summer. It is necessary to include such responses in models as they may represent a substantial loss of carbon in the overall carbon balance of Mediterranean ecosystems. [source]


    Pituitary adenylate cyclase-activating polypeptide attenuates streptozotocin-induced apoptotic death of RIN-m5F cells through regulation of Bcl-2 family protein mRNA expression

    FEBS JOURNAL, Issue 22 2008
    Satomi Onoue
    Oxidative stress, followed by the apoptotic death of pancreatic , cells, is considered to be one of causative agents in the evolution of the type 2 diabetic state; therefore, the protection of , cells can comprise an efficacious strategy for preventing type 2 diabetes. In the present study, RIN-m5F cells (i.e. the rat insulinoma , cell line) were stimulated with streptozotocin, resulting in a time- and concentration-dependent release of lactate dehydrogenase. There appeared to be significant apoptotic cell death after 2 h of treatment with streptozotocin at 10 mm, as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining and 2.6-fold activation of cellular caspase-3, an apoptotic enzyme. By contrast, some neuropeptides of the glucagon-secretin family and coenzyme Q10, an endogenous mitochondrial antioxidant, could attenuate streptozotocin cytotoxicity, and especially pituitary adenylate cyclase-activating polypeptide (PACAP), at a concentration of 10,7 m, exhibited 34% attenuation of lactate dehydrogenase release from streptozotocin-treated RIN-m5F cells. Quantitative RT-PCR experiments indicated the inhibitory effect of PACAP on streptozotocin-evoked up-regulation of pro-apoptotic factor (Noxa and Bax) and a 2.3-fold enhancement of Bcl-2 mRNA expression, a pro-survival protein, was also observed after addition of PACAP. The data obtained suggest the anti-apoptotic role of PACAP in streptozotocin-treated RIN-m5F cells through the regulation of pro-apoptotic and pro-survival factors. [source]


    Bacterial metabolism in small temperate streams under contemporary and future climates

    FRESHWATER BIOLOGY, Issue 12 2007
    KAJ SAND-JENSEN
    Summary 1. We examined the detailed temperature dependence (0,40 °C) of bacterial metabolism associated with fine sediment particles from three Danish lowland streams to test if temperature dependence varied between sites, seasons and quality of organic matter and to evaluate possible consequences of global warming. 2. A modified Arrhenius model with reversible denaturation at high temperatures could account for the temperature dependence of bacterial metabolism and the beginning of saturation above 35 °C and it was superior to the unmodified Arrhenius model. Both models overestimated respiration rates at very low temperatures (<5 °C), whereas Ratkowsky's model , the square root of respiration , provided an excellent linear fit between 0 and 30 °C. 3. There were no indications of differences in temperature dependence among samples dominated by slowly or easily degradable organic substrates. Optimum temperature, apparent minimum temperature, Q10 -values for 0,40 °C and activation energies of bacterial respiration were independent of season, stream site and degradability of organic matter. 4. Q10 -values of bacterial respiration declined significantly with temperature (e.g. 3.31 for 5,15 °C and 1.43 for 25,35 °C) and were independent of site and season. Q10 -values of bacterial production behaved similarly, but were significantly lower than Q10 -values of respiration implying that bacterial growth efficiency declined with temperature. 5. A regional warming scenario for 2071,2100 (IPCC A2) predicted that mean annual temperatures will increase by 3.5 °C in the air and 2.2,4.3 °C in the streams compared with the control scenario for 1961,1990. Temperature is expected to rise more in cool groundwater-fed forest springs than in open, summer-warm streams. Mean annual bacterial respiration is estimated to increase by 26,63% and production by 18,41% among streams assuming that established metabolism,temperature relationships and organic substrate availability remain the same. To improve predictions of future ecosystem behaviour, we further require coupled models of temperature, hydrology, organic production and decomposition. [source]


    Differences in temperature, organic carbon and oxygen consumption among lowland streams

    FRESHWATER BIOLOGY, Issue 12 2005
    KAJ SAND-JENSEN
    Summary 1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or without lakes, (ii) factors influencing the temperature dependence of oxygen consumption rate, (iii) consequences of higher temperature and organic content in lake outlets on oxygen consumption rate, and (iv) possible consequences of forecasted global warming on degradation of organic matter. 2. High concentrations of easily degradable dissolved (DOC) and particulate organic carbon (POC) were found in open streams downstream of plankton-rich lakes, while high concentrations of recalcitrant DOC were found in a forest brook draining a forest swamp. Concentrations of predominantly recalcitrant POC and DOC were low in a groundwater-fed forest spring. Overall, DOC concentration was two to 18 times higher than POC concentrations. 3. Oxygen consumption rate at 20 °C was higher during summer than winter, higher in open than shaded streams and higher in lake outlets than inlets. Rate was closely related to concentrations of chlorophyll and POC but not to DOC. The ratio of oxygen consumption rate to total organic concentrations (DOC + POC), serving as a measure of organic degradability, was highest downstream of lakes, intermediate in open streams and lowest in forest streams. 4. Temperature coefficients describing the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C,1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream of lakes during summer because of higher temperature and, more significantly, greater concentrations of degradable organic carbon. Oxygen consumption rates were up to seven times higher in the stream with three impoundments than in a neighbouring unshaded stream and 21 times higher than in the groundwater-fed forest spring. 6. A regional climate model has calculated a dramatic 4,5 °C rise in air temperature over Denmark by 2070,2100. If this is realised, unshaded streams are estimated to become 2,3 °C warmer in summer and winter and 5,7 °C warmer in spring and, thereby, increase oxygen consumption rates at ambient temperature by 30,40% and 80,130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal waters. [source]


    Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition

    GLOBAL CHANGE BIOLOGY, Issue 10 2010
    JEROEN GILLABEL
    Abstract The ability to predict C cycle responses to temperature changes depends on the accurate representation of temperature sensitivity (Q10) of soil organic matter (SOM) decomposition in C models for different C pools and soil depths. Theoretically, Q10 of SOM decomposition is determined by SOM quality and availability (referred to here as SOM protection). Here, we focus on the role of SOM protection in attenuating the intrinsic, SOM quality dependent Q10. To assess the separate effects of SOM quality and protection, we incubated topsoil and subsoil samples characterized by differences in SOM protection under optimum moisture conditions at 25 °C and 35 °C. Although lower SOM quality in the subsoil should lead to a higher Q10 according to kinetic theory, we observed a much lower overall temperature response in subsoil compared with the topsoil. Q10 values determined for respired SOM fractions of decreasing lability within the topsoil increased from 1.9 for the most labile to 3.8 for the least labile respired SOM, whereas corresponding Q10 values for the subsoil did not show this trend (Q10 between 1.4 and 0.9). These results indicate the existence of a limiting factor that attenuates the intrinsic effect of SOM quality on Q10 in the subsoil. A parallel incubation experiment of 13C-labeled plant material added to top- and subsoil showed that decomposition of an unprotected C substrate of equal quality responds similarly to temperature changes in top- and subsoil. This further confirms that the attenuating effect on Q10 in the subsoil originates from SOM protection rather than from microbial properties or other nutrient limitations. In conclusion, we found experimental evidence that SOM protection can attenuate the intrinsic Q10 of SOM decomposition. [source]


    Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

    GLOBAL CHANGE BIOLOGY, Issue 9 2010
    M. P. WALDROP
    Abstract The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at ,5 and 5 °C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. [source]


    Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates

    GLOBAL CHANGE BIOLOGY, Issue 6 2010
    J. Å. MARTIN WETTERSTEDT
    Abstract Kinetic theory suggests that the temperature sensitivity of decomposition of soil organic matter should increase with increasing recalcitrance. This ,temperature,quality hypothesis' was tested in a laboratory experiment. Microcosms with wheat straw, spruce needle litter and mor humus were initially placed at 5, 15 and 25 °C until the same cumulative amount of CO2 had been respired. Thereafter, microcosms from each single temperature were moved to a final set of incubation temperatures of 5, 15 and 25 °C. Straw decomposed faster than needle litter at 25 and 15 °C, but slower than needle litter at 5 °C, and showed a higher temperature sensitivity (expressed as Q10) than needle litter at low temperatures. When moved to the same temperature, needle litter initially incubated at 5 and 15 °C had significantly higher respiration rates in the final incubation than litters initially placed at 25 °C. Mor humus placed at equal temperatures during the initial and final incubations had higher cumulative respiration during the final incubation than humus experiencing a shift in temperature, both up- and downwards. These results indicate that other factors than substrate quality are needed to fully explain the temperature dependence. In agreement with the hypothesis, Q10 was always higher for the temperature step between 5 and 15 °C than between 15 and 25 °C. Also in agreement with the temperature,quality hypothesis, Q10 significantly increased with increasing degree of decomposition in five out of the six constant temperature treatments with needle litter and mor humus. Q10s for substrates moved between temperatures tended to be higher than for substrates remaining at the initial temperature and an upward shift in temperature increased Q10 more than a downward shift. This study largely supports the temperature,quality hypothesis. However, other factors like acclimation and synthesis of recalcitrant compounds can modify the temperature response. [source]


    Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils

    GLOBAL CHANGE BIOLOGY, Issue 7 2009
    MATTHEW D. WALLENSTEIN
    Abstract Arctic soils contain large amounts of organic matter due to very slow rates of detritus decomposition. The first step in decomposition results from the activity of extracellular enzymes produced by soil microbes. We hypothesized that potential enzyme activities are low relative to the large stocks of organic matter in Arctic tundra soils, and that enzyme activity is low at in situ temperatures. We measured the potential activity of six hydrolytic enzymes at 4 and 20 °C on four sampling dates in tussock, intertussock, shrub organic, and shrub mineral soils at Toolik Lake, Alaska. Potential activities of N -acetyl glucosaminidase, ,-glucosidase, and peptidase tended to be greatest at the end of winter, suggesting that microbes produced enzymes while soils were frozen. In general, enzyme activities did not increase during the Arctic summer, suggesting that enzyme production is N-limited during the period when temperatures would otherwise drive higher enzyme activity in situ. We also detected seasonal variations in the temperature sensitivity (Q10) of soil enzymes. In general, soil enzyme pools were more sensitive to temperature at the end of the winter than during the summer. We modeled potential in situ,-glucosidase activities for tussock and shrub organic soils based on measured enzyme activities, temperature sensitivities, and daily soil temperature data. Modeled in situ enzyme activity in tussock soils increased briefly during the spring, then declined through the summer. In shrub soils, modeled enzyme activities increased through the spring thaw into early August, and then declined through the late summer and into winter. Overall, temperature is the strongest factor driving low in situ enzyme activities in the Arctic. However, enzyme activity was low during the summer, possibly due to N-limitation of enzyme production, which would constrain enzyme activity during the brief period when temperatures would otherwise drive higher rates of decomposition. [source]


    Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table draw-down

    GLOBAL CHANGE BIOLOGY, Issue 4 2009
    J. M. CLARK
    Abstract The production and release of dissolved organic carbon (DOC) from peat soils is thought to be sensitive to changes in climate, specifically changes in temperature and rainfall. However, little is known about the actual rates of net DOC production in response to temperature and water table draw-down, particularly in comparison to carbon dioxide (CO2) fluxes. To explore these relationships, we carried out a laboratory experiment on intact peat soil cores under controlled temperature and water table conditions to determine the impact and interaction of each of these climatic factors on net DOC production. We found a significant interaction (P < 0.001) between temperature, water table draw-down and net DOC production across the whole soil core (0 to ,55 cm depth). This corresponded to an increase in the Q10 (i.e. rise in the rate of net DOC production over a 10 °C range) from 1.84 under high water tables and anaerobic conditions to 3.53 under water table draw-down and aerobic conditions between ,10 and , 40 cm depth. However, increases in net DOC production were only seen after water tables recovered to the surface as secondary changes in soil water chemistry driven by sulphur redox reactions decreased DOC solubility, and therefore DOC concentrations, during periods of water table draw-down. Furthermore, net microbial consumption of DOC was also apparent at , 1 cm depth and was an additional cause of declining DOC concentrations during dry periods. Therefore, although increased temperature and decreased rainfall could have a significant effect on net DOC release from peatlands, these climatic effects could be masked by other factors controlling the biological consumption of DOC in addition to soil water chemistry and DOC solubility. These findings highlight both the sensitivity of DOC release from ombrotrophic peat to episodic changes in water table draw-down, and the need to disentangle complex and interacting controls on DOC dynamics to fully understand the impact of environmental change on this system. [source]


    Sensitivity of organic matter decomposition to warming varies with its quality

    GLOBAL CHANGE BIOLOGY, Issue 4 2008
    RICHARD T. CONANT
    Abstract The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q10,q) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q10,q=2.1 ± 0.2; more resistant Q10,q=3.8 ± 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q10,q=2.3; more resistant Q10,q=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q10,q=3.3 ± 0.2; resistant Q10,q=4.9 ± 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q10,q=2.4 ± 0.3) was greater than that for undisturbed grassland soils (Q10,q=1.7 ± 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed. [source]


    On the variability of respiration in terrestrial ecosystems: moving beyond Q10

    GLOBAL CHANGE BIOLOGY, Issue 2 2006
    ERIC A. DAVIDSON
    Abstract Respiration, which is the second most important carbon flux in ecosystems following gross primary productivity, is typically represented in biogeochemical models by simple temperature dependence equations. These equations were established in the 19th century and have been modified very little since then. Recent applications of these equations to data on soil respiration have produced highly variable apparent temperature sensitivities. This paper searches for reasons for this variability, ranging from biochemical reactions to ecosystem-scale substrate supply. For a simple membrane-bound enzymatic system that follows Michaelis,Menten kinetics, the temperature sensitivities of maximum enzyme activity (Vmax) and the half-saturation constant that reflects the affinity of the enzyme for the substrate (Km) can cancel each other to produce no net temperature dependence of the enzyme. Alternatively, when diffusion of substrates covaries with temperature, then the combined temperature sensitivity can be higher than that of each individual process. We also present examples to show that soluble carbon substrate supply is likely to be important at scales ranging from transport across membranes, diffusion through soil water films, allocation to aboveground and belowground plant tissues, phenological patterns of carbon allocation and growth, and intersite differences in productivity. Robust models of soil respiration will require that the direct effects of substrate supply, temperature, and desiccation stress be separated from the indirect effects of temperature and soil water content on substrate diffusion and availability. We speculate that apparent Q10 values of respiration that are significantly above about 2.5 probably indicate that some unidentified process of substrate supply is confounded with observed temperature variation. [source]


    Estimates of CO2 uptake and release among European forests based on eddy covariance data

    GLOBAL CHANGE BIOLOGY, Issue 9 2004
    Albert I. J. M. Van Dijk
    Abstract The net ecosystem exchange (NEE) of forests represents the balance of gross primary productivity (GPP) and respiration (R). Methods to estimate these two components from eddy covariance flux measurements are usually based on a functional relationship between respiration and temperature that is calibrated for night-time (respiration) fluxes and subsequently extrapolated using daytime temperature measurements. However, respiration fluxes originate from different parts of the ecosystem, each of which experiences its own course of temperature. Moreover, if the temperature,respiration function is fitted to combined data from different stages of biological development or seasons, a spurious temperature effect may be included that will lead to overestimation of the direct effect of temperature and therefore to overestimates of daytime respiration. We used the EUROFLUX eddy covariance data set for 15 European forests and pooled data per site, month and for conditions of low and sufficient soil moisture, respectively. We found that using air temperature (measured above the canopy) rather than soil temperature (measured 5 cm below the surface) yielded the most reliable and consistent exponential (Q10) temperature,respiration relationship. A fundamental difference in air temperature-based Q10 values for different sites, times of year or soil moisture conditions could not be established; all were in the range 1.6,2.5. However, base respiration (R0, i.e. respiration rate scaled to 0°C) did vary significantly among sites and over the course of the year, with increased base respiration rates during the growing season. We used the overall mean Q10 of 2.0 to estimate annual GPP and R. Testing suggested that the uncertainty in total GPP and R associated with the method of separation was generally well within 15%. For the sites investigated, we found a positive relationship between GPP and R, indicating that there is a latitudinal trend in NEE because the absolute decrease in GPP towards the pole is greater than in R. [source]


    Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity

    GLOBAL CHANGE BIOLOGY, Issue 2 2004
    J. Curiel yuste
    Abstract The temperature sensitivity of soil respiration (SR) is often estimated from the seasonal changes in the flux relative to those in soil temperature, and subsequently used in models to interpolate or predict soil fluxes. However, temperature sensitivities derived from seasonal changes in SR (from here on denoted seasonal Q10) may not solely reflect the temperature sensitivity of SR, because seasonal changes in SR can also be affected by other seasonally fluctuating conditions and processes. In this manuscript, we present a case study of how the seasonal Q10 of SR can be decoupled from the temperature sensitivity of SR. In a mixed temperate forest, we measured SR under vegetations with different leaf strategies: pure evergreen, pure deciduous, and mixed. Seasonal Q10 was much higher under deciduous than under evergreen canopies. However, at a shorter time scale, both vegetation types exhibited very similar Q10 values, indicating that the large differences in seasonal Q10 do not represent differences in the temperature sensitivity of the soil metabolism. The seasonal Q10 depends strongly on the amplitude of the seasonal changes in SR (SRs), which, under the particular climatic and edaphic conditions of our forest study site, were significantly larger in deciduous forest. In turn, SRs was positively correlated with the seasonal changes in leaf area index (LAIs), a measure of the deciduousness of the vegetation. Thus, in this temperate maritime forest, seasonal Q10 of SR was strongly influenced by the deciduousness of the vegetation. We conclude that the large differences in seasonal Q10 were not entirely due to different temperature sensitivities, but also to different seasonal patterns of plant activity in the evergreen and deciduous plants of this site. Some coniferous forests may be more seasonal than the one we studied, and the deciduous,evergreen differences observed here may not be broadly applicable, but this case study demonstrates that variation of plant phenological process can significantly contribute to the seasonality of SR, and, hence, calculated Q10 values. Where this occurs, the seasonal Q10 value for SR does not accurately represent temperature sensitivity. Because the strong seasonal correlation between SR and temperature does not necessarily imply a causal relationship, Q10 values derived form annual patterns of SR should be used with caution when predicting future responses of SR to climatic change. [source]


    Functional connections and pathways of coenzyme Q10-inducible genes: An in-silico study

    IUBMB LIFE, Issue 10 2007
    Frank Döring
    Abstract Coenzyme Q10 (CoQ10, ubiquinone) is an essential cofactor in the electron transport chain, serves as a potent antioxidant in mitochondria and lipid membranes, and is often used as a dietary supplement for a number of diseases including cardiovascular diseases. Recently, we obtained evidence that CoQ10 (Kaneka Q10Ô) affects the expression of hundreds of human genes. To decipher the functional and regulatory connections of these genes, a literature search combined with transcription factor binding site analysis was performed using Genomatix BiblioSphere and MatInspector. This in-silico analysis revealed 17 CoQ10-inducible genes which are functionally connected by signalling pathways of G-protein coupled receptors, JAK/STAT, integrin, and beta-arrestin. Promoter analysis of these CoQ10-inducible genes showed one group of NF, B-regulated genes, namely IL5, thrombin, vitronectin receptor and C-reactive protein (CRP). Furthermore, a common promoter framework containing binding sites of the transcription factor families EVI1, HOXF, HOXC, and CLOX was identified in the promoters of IL5, CRP, and vitronectin receptor. The identified CoQ10-inducible genes and pathways play an important role in inflammatory response. Since these effects are based on an in-vitro study, the effect of CoQ10 on vascular health in vivo needs to be addressed in further animal and/or human intervention studies. IUBMB Life, 59: 628-633, 2007 [source]


    Effects of different dietary phytase activities on the concentration of antioxidants in the liver of growing broilers

    JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 4 2010
    F. Karadas
    Summary One-hundred and fifty male chickens were used to evaluate the effects of different activities (0, 250, 500, 12 500 FTU/kg) of phytase on their performance and antioxidant concentration in the liver. The chicks were housed in 30 cages and were allocated to six replicates of five dietary treatments. All diets were formulated to be adequate in energy and protein (12.90 MJ/kg metabolizable energy, 214 g/kg crude protein), however, the negative control (NC) was lower in available P compared with the positive control (PC) (2.5 vs. 4.5 g/kg diet). The other three diets were the NC supplemented with phytase at 250, 500 and 12 500 FTU/kg (NC + 250, NC + 500 and NC + 12 500 FTU respectively). The concentration of antioxidants in the liver of the birds was determined using HPLC at 21 days of age. Low P diets (NC) reduced weight gain, however, supplementation with phytase improved weight gain to the extent that it was better than the PC at the 12 500 FTU treatment (p < 0.05). Feed conversion ratio was also improved by the high level of phytase supplement more than other treatments (p < 0.05). Feed consumption was not affected either by dietary phosphorus concentration or by different phytase supplementation. The antioxidant data showed that the unsupplemented diet with low phosphorus (NC) decreased the concentration of coenzyme Q10 and retinol-linoleate in the liver compared with that of birds on the adequate phosphorus treatment (PC). Phytase supplementation, especially at the higher doses (500 and 12 500 FTU) increased the level of coenzyme Q10 to the same level as the PC treatment. In addition, the highest dose (12 500 FTU) of phytase increased retinol concentration in the liver of chickens compared with those on the NC treatment. The highest inclusion level of phytase increased the ,-tocopherol level in the liver compared with the lower levels of phytase (NC + 250 and NC + 500 FTU). [source]


    Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants

    AGING CELL, Issue 4 2009
    Sang-Kyu Park
    Summary We used DNA microarrays to identify panels of transcriptional markers of aging that are differentially expressed in young (5 month) and old (25 month) mice of multiple inbred strains (129sv, BALB/c, CBA, DBA, B6, C3H and B6C3F1). In the heart, age-related changes of five genes were studied throughout the mouse lifespan: complement component 4, chemokine ligand 14, component of Sp100-rs, phenylalanine hydroxylase and src family associated phosphoprotein 2. A similar analysis in the brain (cerebellum) involved complement component 1q (alpha polypeptide), complement component 4, P lysozyme structural, glial fibrillary acidic protein and cathepsin S. Caloric restriction (CR) inhibited age-related expression of these genes in both tissues. Parametric analysis of gene set enrichment identified several biological processes that are induced with aging in multiple mouse strains. We also tested the ability of dietary antioxidants to oppose these transcriptional markers of aging. Lycopene, resveratrol, acetyl- l -carnitine and tempol were as effective as CR in the heart, and ,-lipoic acid and coenzyme Q10 were as effective as CR in the cerebellum. These findings suggest that transcriptional biomarkers of aging in mice can be used to estimate the efficacy of aging interventions on a tissue-specific basis. [source]


    Synthesis of [3,- 14C] coenzyme Q10

    JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 10 2002
    Kimio Hamamura
    Abstract Radio-labelled coenzyme Q10, labelled at the 3,-position with 14C, was synthesized starting from natural solanesol and ethyl [3- 14C] acetoacetate. The radiochemical yield was 8.0% from ethyl [3- 14C] acetoacetate. The specific radioactivity of the product was 44.8 ,Ci, 1.66 MBq/mg. The specific radioactivity and radiochemical purity are sufficiently high to enable us to use this labelled form of coenzyme Q10 in metabolic studies. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Temperature functions of the rate coefficients of net N mineralization in sandy arable soils.

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2004
    Part I. Derivation from laboratory incubations
    Abstract This study aimed to experimentally determine adequate temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany. Long-term laboratory incubations were carried out in seven sandy arable soils at 3°C, 10°C, 19°C, 28°C, and 35°C in order to derive the rate coefficients of a simultaneous two-pool first-order kinetic equation. Thereby we differentiated between a small, fast mineralizable N pool, comprising mainly fresh residues, and a larger, slowly mineralizable N pool of old, humified organic matter. The rate coefficients were plotted against temperature, and fits of several different functions were tested: Arrhenius, Q10, and multiple non-mechanistic equations. The two derived rate coefficients showed very different temperature functions. Especially in critical temperature ranges (<5/10°C, >30/35°C) common Q10 functions failed to fit well, and, only below 10°C, the Arrhenius functions were in agreement with mean measured rate coefficients. Over the studied temperature range, only relatively complex, multiple equations could adequately account for the observed patterns. In addition, temperature functions that have been derived earlier from loess soils from NW Germany were found not to be transferable to the sandy arable soils studied. Thus, the results strongly question the use of the same Arrhenius or Q10 function or the same rate modifying factor for different N pools as well as for different soils as is generally done in models. Evaluations with field measurements of net N mineralization in part II of the paper (Heumann and Böttcher, 2004) will show which functions perform best in the field. Die Temperaturfunktionen der Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböde nI. Ableitung aus Laborinkubationen Untersuchungsziel war die experimentelle Bestimmung adäquater Temperaturfunktionen für die Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböden NW-Deutschlands. Anhand von Langzeit-Laborinkubationen bei 3, 10, 19, 28 und 35,°C wurden für sieben sandige Ackerböden die Reaktionskoeffizienten zweier N-Pools mit Reaktionskinetik erster Ordnung ermittelt. Dadurch konnte zwischen einem kleineren, schnell mineralisierbaren N-Pool, der hauptsächlich frische Residuen umfasst, und einem größeren, langsam mineralisierbaren N-Pool aus überwiegend alter humifizierter organischer Substanz unterschieden werden. Die ermittelten Reaktionskoeffizienten wurden gegen die Temperatur aufgetragen und verschiedene Funktionen angepasst: Arrhenius-, Q10 - und multiple nicht-mechanistische Gleichungen. Die Temperaturfunktionen der beiden Reaktionskoeffizienten unterschieden sich stark. Besonders innerhalb kritischer Temperaturbereiche (<5/10,°C, >30/35,°C) war die Übereinstimmung üblicher Q10 -Funktionen schlecht, und nur unterhalb von 10,°C stimmten die Arrhenius-Funktionen mit den mittleren gemessenen Reaktionskoeffizienten überein. Über den gesamten untersuchten Temperaturbereich konnten nur relativ komplexe, multiple Gleichungen die beobachteten Verläufe angemessen nachzeichnen. Weiterhin waren die Temperaturfunktionen, die ehemals an norddeutschen Lössböden ermittelt wurden, nicht auf die untersuchten sandigen Ackerböden übertragbar. Daher stellen die Ergebnisse den Gebrauch derselben Arrhenius- oder Q10 -Funktion sowie gleicher Ratenfaktoren für verschiedene N-Pools und auch für verschiedene Böden stark in Frage. In Teil II der Arbeit (Heumann and Böttcher, 2004) wird anhand einer Überprüfung mit Messungen der N-Nettomineralisation im Feld gezeigt, welche Funktionen die beste Übereinstimmung im Freiland erbringen. [source]


    Temperature functions of the rate coefficients of net N mineralization in sandy arable soils.

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2004
    Part II.
    Abstract The aim of this study was to evaluate experimentally derived temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany via field measurements. In part I of this paper (Heumann and Böttcher, 2004), different temperature functions for the rate coefficients of a two-pool first-order kinetic equation were derived by long-term laboratory incubations at 3°C to 35°C. In this paper, field net N mineralization during winter of 25 plots was measured in undisturbed soil columns with a diameter of 20,cm to the depth of the Ap horizon. Mean simulated net N mineralization with the most adequate multiple functions corresponded also best with the mean of the measured values despite of an overestimation of about 10%. Distinctly larger deviations under use of other temperature functions (Arrhenius, Q10) were directly related to their deviations from mean, experimentally derived rate coefficients. Simulated net N mineralization in the soil columns was significantly correlated with measured values, regardless of the temperature functions. Yet the goodness of fit was generally relatively low due to the spatial variability of measured net N mineralization within replicate soil columns, although the mean CV (38%) was by far not extraordinary. The pool of slowly mineralizable N contributed considerably to net N mineralization during four to five winter months, on an average 10.0 kg N ha,1, about one third of total simulated N mineralization. Sometimes, it contributed even 21.3 kg N ha,1, which is almost sufficient to reach the EU drinking-water limit for nitrate in these soils. Simulations with widely used functions that were once derived from loess soils overestimated mineralization from pool Nslow in the studied sandy arable soils by a factor of two. Die Temperaturfunktionen der Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböde nII. Überprüfung anhand von Mineralisationsmessungen im Freiland Ziel dieser Untersuchung war die Überprüfung experimentell ermittelter Temperaturfunktionen für die Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböden NW-Deutschlands anhand von Freilandmessungen. In Teil I der Arbeit (Heumann and Böttcher, 2004) wurden verschiedene Temperaturfunktionen für die Reaktionskoeffizienten zweier N-Pools mit Reaktionskinetik erster Ordnung mittels Langzeit-Laborinkubationen bei 3 bis 35°C bestimmt. In diesem Artikel wurde von 25 Plots die winterliche N-Nettomineralisation im Freiland in ungestörten Bodensäulen mit einem Durchmesser von 20,cm bis zur Tiefe des Ap-Horizontes gemessen. Im Mittel gaben die Simulationen mit den am besten passenden, multiplen Funktionen die Messergebnisse auch am besten wieder, trotz einer Überschätzung um etwa 10%. Deutlich größere Abweichungen bei Benutzung anderer Temperaturfunktionen (Arrhenius, Q10) standen in direkter Beziehung zu deren Abweichungen von den mittleren, experimentell ermittelten Reaktionskoeffizienten. Die simulierte N-Nettomineralisation war unabhängig von den Temperaturfunktionen signifikant mit den Messergebnissen korreliert. Jedoch war die Güte der Anpassung im Allgemeinen relativ niedrig aufgrund der räumlichen Variabilität der gemessenen N-Nettomineralisation innerhalb der einzelnen Säulen eines Plots, obwohl der mittlere CV (38%) bei weitem nicht außergewöhnlich war. Der langsam mineralisierbare N-Pool trug beträchtlich zur N-Nettomineralisation innerhalb von vier bis fünf Wintermonaten bei, durchschnittlich 10,0 kg N ha,1, etwa ein Drittel der gesamten simulierten N-Mineralisation. In manchen Böden waren es sogar 21,3 kg N ha,1, was fast ausreicht, um den EU-Trinkwassergrenzwert für Nitrat in diesen Böden zu erreichen. Simulationen mit häufig benutzten Funktionen, die ursprünglich an Lössböden ermittelt wurden, überschätzten die Mineralisation aus dem Pool Nslow in den untersuchten Sandböden um den Faktor zwei. [source]


    Safety and tolerability of high-dosage coenzyme Q10 in Huntington's disease and healthy subjects,

    MOVEMENT DISORDERS, Issue 12 2010
    Article first published online: 28 JUL 2010
    Abstract Coenzyme Q10 (CoQ10), a potential neuroprotective compound, was previously investigated at a dosage of 600 mg/day in Huntington's disease (HD) patients and demonstrated a trend toward slowing disease progression. Higher CoQ10 dosages may prove beneficial. We investigated the tolerability and blood levels associated with 1,200, 2,400, and 3,600 mg/day of CoQ10 in HD and healthy subjects. Twenty-eight subjects (20 HD, 8 healthy) enrolled in a 20-week open-label trial. Subjects started on 1,200 mg/day of CoQ10, increasing every 4 weeks by 1,200 mg to a maximum dosage of 3,600 mg/day. Monthly evaluations included review of adverse events and CoQ10 blood levels. Twenty-three subjects (82%) achieved the target dosage of 3,600 mg/day. Six subjects (2 healthy, 4 HD) withdrew prematurely (gastrointestinal (GI) symptoms in 3, worsening HD in 2, and 1 because of a fall). All three serious adverse events occurred in a single subject, and were deemed unrelated to CoQ10. The most common adverse events seen were GI symptoms. Mean (± SD) CoQ10 blood levels achieved over the course of the trial were as follows: 1.26 ± 1.27 ,g/mL (baseline, n = 28), 5.59 ± 2.24 ,g/mL (1,200 mg/day, week 4, n = 26), 6.38 ± 3.25 ,g/mL (2,400 mg/day, week 8, n = 25), 7.49 ± 4.09 ,g/mL (3,600 mg/day, week 12, n = 23), and 6.78 ± 3.36,g/mL (3,600 mg/day, week 20, n = 20). CoQ10 was well tolerated with over 80% of subjects achieving the target dosage. Dosages of 2,400 mg/day may provide the best balance between tolerability and blood level achieved. Further studies examining the efficacy of 2,400 mg/day are planned. © 2010 Movement Disorder Society. [source]


    Respiratory Q10 of marigold (Tagetes patula) in response to long-term temperature differences and its relationship to growth and maintenance respiration

    PHYSIOLOGIA PLANTARUM, Issue 2 2006
    Marc W. Van Iersel
    Acclimation of respiration to temperature is not well understood. To determine whether whole plant respiration responses to long-term temperature treatments can be described using the Q10 concept, the CO2 exchange rate of marigolds (Tagetes patula L. ,Queen Sophia'), grown at 20°C or 30°C, was measured for 62 days. When plants of the same age were compared, plants grown at 20°C consistently had a higher specific respiration (Rspc) than plants grown at 30°C (long-term Q10= 0.71,0.97). This was due to a combination of greater dry mass at 30°C and a decrease in Rspc with increasing mass. When plants of the same dry mass were compared, the long-term Q10 was 1.35,1.55; i.e. Rspc was higher at 30°C than at 20°C. Whole plant respiration could be accurately described by dividing respiration into growth and maintenance components. The maintenance respiration coefficient was higher at 30°C than at 20°C, while the growth respiration coefficient was lower at 30°C, partly because of temperature-dependent changes in plant composition. These results suggest difficulties with interpreting temperature effects on whole plant respiration, because conclusions depend greatly on whether plants of the same age or mass are compared. These difficulties can be minimized by describing whole plant respiration on the basis of growth and maintenance components. [source]


    The apparent temperature response of leaf respiration depends on the timescale of measurements: a study of two cold climate species

    PLANT BIOLOGY, Issue 2 2008
    D. Bruhn
    Abstract Productivity and climate models often use a constant Q10 for plant respiration, assuming tight control of respiration by temperature. We studied the temperature response of leaf respiration of two cold climate species (the Australian tree Eucalyptus pauciflora and the subantarctic megaherb Pringlea antiscorbutica, both measured in a field setting) on a short timescale (minutes) during different times within a diel course, and on a longer timescale, using diel variations in ambient temperature. There were great variations in Q10 depending on measuring day, measuring time and measuring method. When Q10 was calculated from short-term (15 min) manipulations of leaf temperature, the resulting values were usually markedly smaller than when Q10 was calculated from measurements at ambient leaf temperatures spread over a day. While for E. pauciflora, Q10 estimates decreased with rising temperature (corroborating the concept of a temperature-dependent Q10), the opposite was the case for P. antiscorbutica. Clearly, factors other than temperature co-regulate both leaf respiration rates and temperature sensitivity and contribute to diel and seasonal variation of respiration. [source]


    Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization

    PLANT CELL & ENVIRONMENT, Issue 11 2008
    JOHN E. DRAKE
    ABSTRACT Forest ecosystems release large amounts of carbon to the atmosphere from fine-root respiration (Rr), but the control of this flux and its temperature sensitivity (Q10) are poorly understood. We attempted to: (1) identify the factors limiting this flux using additions of glucose and an electron transport uncoupler (carbonyl cyanide m-chlorophenylhydrazone); and (2) improve yearly estimates of Rr by directly measuring its Q10in situ using temperature-controlled cuvettes buried around intact, attached roots. The proximal limits of Rr of loblolly pine (Pinus taeda L.) trees exposed to free-air CO2 enrichment (FACE) and N fertilization were seasonally variable; enzyme capacity limited Rr in the winter, and a combination of substrate supply and adenylate availability limited Rr in summer months. The limiting factors of Rr were not affected by elevated CO2 or N fertilization. Elevated CO2 increased annual stand-level Rr by 34% whereas the combination of elevated CO2 and N fertilization reduced Rr by 40%. Measurements of in situ Rr with high temporal resolution detected diel patterns that were correlated with canopy photosynthesis with a lag of 1 d or less as measured by eddy covariance, indicating a dynamic link between canopy photosynthesis and root respiration. These results suggest that Rr is coupled to daily canopy photosynthesis and increases with carbon allocation below ground. [source]


    Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana

    PLANT CELL & ENVIRONMENT, Issue 7 2006
    VITTORIA DI MARTINO RIGANO
    ABSTRACT Temperature responses of nitrate reductase (NR) were studied in the psychrophilic unicellular alga, Koliella antarctica, and in the mesophilic species, Chlorella sorokiniana. Enzymes from both species were purified to near homogeneity by Blue Sepharose (Pharmacia, Uppsala, Sweden) affinity chromatography and high-resolution anion-exchange chromatography (MonoQ; Pharmacia; Uppsala, Sweden). Both enzymes have a subunit molecular mass of 100 kDa, and K. antarctica NR has a native molecular mass of 367 kDa. NR from K. antarctica used both NADPH and NADH, whereas NR from C. sorokiniana used NADH only. Both NRs used reduced methyl viologen (MVH) or benzyl viologen (BVH). In crude extracts, maximal NADH and MVH-dependent activities of cryophilic NR were found at 15 and 35 °C, respectively, and retained 77 and 62% of maximal activity, respectively, at 10 °C. Maximal NADH and MVH-dependent activities of mesophilic NR, however, were found at 25 and 45 °C, respectively, with only 33 and 23% of maximal activities being retained at 10 °C. In presence of 2 µm flavin adenine dinucleotide (FAD), activities of cryophilic NADH:NR and mesophilic NADH:NR were stable up to 25 and 35 °C, respectively. Arrhenius plots constructed with cryophilic and mesophilic MVH:NR rate constants, in both presence or absence of FAD, showed break points at 15 and 25 °C, respectively. Essentially, similar results were obtained for purified enzymes and for activities measured in crude extracts. Factors by which the rate increases by raising temperature 10 °C (Q10) and apparent activation energy (Ea) values for NADH and MVH activities measured in enzyme preparations without added FAD differed slightly from those measured with FAD. Overall thermal features of the NADH and MVH activities of the cryophilic NR, including optimal temperatures, heat inactivation (with/without added FAD) and break-point temperature in Arrhenius plots, are all shifted by about 10 °C towards lower temperatures than those of the mesophilic enzyme. Transfer of electrons from NADH to nitrate occurs via all three redox centres within NR molecule, whereas transfer from MVH requires Mo-pterin prosthetic group only; therefore, our results strongly suggest that structural modification(s) for cold adaptation affect thermodynamic properties of each of the functional domains within NR holoenzyme in equal measure. [source]


    Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem

    PLANT CELL & ENVIRONMENT, Issue 9 2001
    J. G. Hamilton
    Abstract We measured the short-term direct and long-term indirect effects of elevated CO2 on leaf dark respiration of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in an intact forest ecosystem. Trees were exposed to ambient or ambient + 200 µmol mol,1 atmospheric CO2 using free-air carbon dioxide enrichment (FACE) technology. After correcting for measurement artefacts, a short-term 200 µmol mol,1 increase in CO2 reduced leaf respiration by 7,14% for sweetgum and had essentially no effect on loblolly pine. This direct suppression of respiration was independent of the CO2 concentration under which the trees were grown. Growth under elevated CO2 did not appear to have any long-term indirect effects on leaf maintenance respiration rates or the response of respiration to changes in temperature (Q10, R0). Also, we found no relationship between mass-based respiration rates and leaf total nitrogen concentrations. Leaf construction costs were unaffected by growth CO2 concentration, although leaf construction respiration decreased at elevated CO2 in both species for leaves at the top of the canopy. We conclude that elevated CO2 has little effect on leaf tissue respiration, and that the influence of elevated CO2 on plant respiratory carbon flux is primarily through increased biomass. [source]


    Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature: the importance of changes in the capacity and temperature sensitivity of respiration

    PLANT CELL & ENVIRONMENT, Issue 1 2000
    O. K. Atkin
    ABSTRACT We investigated the relationship between daily and seasonal temperature variation and dark respiratory CO2 release by leaves of snow gum (Eucalyptus pauciflora Sieb. ex Spreng) that were grown in their natural habitat or under controlled-environment conditions. The open grassland field site in SE Australia was characterized by large seasonal and diurnal changes in air temperature. On each measurement day, leaf respiration rates in darkness were measured in situ at 2,3 h intervals over a 24 h period, with measurements being conducted at the ambient leaf temperature. The rate of respiration at a set measuring temperature (i.e. apparent ,respiratory capacity') was greater in seedlings grown under low average daily temperatures (i.e. acclimation occurred), both in the field and under controlled-environment conditions. The sensitivity of leaf respiration to diurnal changes in temperature (i.e. the Q10 of leaf respiration) exhibited little seasonal variation over much of the year. However, Q10 values were significantly greater on cold winter days (i.e. when daily average and minimum air temperatures were below 6° and ,1 °C, respectively). These differences in Q10 values were not due to bias arizing from the contrasting daily temperature amplitudes in winter and summer, as the Q10 of leaf respiration was constant over a wide temperature range in short-term experiments. Due to the higher Q10 values in winter, there was less difference between winter and summer leaf respiration rates measured at 5 °C than at 25 °C. The net result of these changes was that there was relatively little difference in total daily leaf respiratory CO2 release per unit leaf dry mass in winter and summer. Under controlled-environment conditions, acclimation of respiration to growth temperature occurred in as little as 1,3 d. Acclimation was associated with a change in the concentration of soluble sugars under controlled conditions, but not in the field. Our data suggest that acclimation in the field may be associated with the onset of cold-induced photo-inhibition. We conclude that cold-acclimation of dark respiration in snow gum leaves is characterized by changes in both the temperature sensitivity and apparent ,capacity' of the respiratory apparatus, and that such changes will have an important impact on the carbon economy of snow gum plants. [source]