Published Records (published + record)

Distribution by Scientific Domains


Selected Abstracts


Onthophagus pilularius and its close relatives in Sundaland: a taxonomic reappraisal (Coleoptera, Scarabaeidae, Scarabaeinae)

MITTEILUNGEN AUS DEM MUSEUM FUER NATURKUNDE IN BERLIN-DEUTSCHE ENTOMOLOGISCHE ZEITSCHRIFT, Issue 1 2009
Jan Krikken
Abstract Onthophagus pilularius Lansberge, 1883, a small, poorly known scarab from Sundaland, is redescribed, and a lectotype is designated. A scrutiny of collections reputedly containing O. pilularius and/or its close relative semicupreus Harold, 1877 led to an increased taxonomic resolution, including the recognition of four new species, here described: O. danumcupreus (Malaysia: Sabah), javacupreus (Indonesia: Java), monticupreus (Malaysia: Sabah), peninsulocupreus (Peninsular Malaysia). The species are all placed in Boucomont's (1914) semicupreus group of Onthophagus Latreille, 1802, subgenus Parascatonomus Paulian, 1932. A redefinition of the O. semicupreus group, and a list of the species now included (classified into two subgroups) are given. The eight named species with a distinctly metallic forebody (here called the semicupreus subgroup) are distinguished in a key based on morphological characters, with emphasis on the structure of the aedeagus. Published records of species in the O. semicupreus subgroup require revision on the basis of the present reappraisal. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Source population of dispersing rock-wallabies (Petrogale lateralis) idengified by assignment tests on multilocus genotypic data

MOLECULAR ECOLOGY, Issue 12 2001
M. D. B. Eldridge
Abstract The ability to confidently idengify or exclude a population as the source of an individual has numerous powerful applications in molecular ecology. Several alternative assignment methods have recently been developed and are yet to be fully evaluated with empirical data. In this study we tested the efficacy of different assignment methods by using a translocated rock-wallaby (Petrogale lateralis) population, of known provenance. Specimens from the translocated population (n = 43), its known source population (n = 30) and four other nearby populations (n = 19,32) were genotyped for 11 polymorphic microsatellite loci. The results idengified Bayesian clustering, frequency and Bayesian methods as the most consistent and accurate, correctly assigning 93,100% of individuals up to a significance threshold of P = 0.01. Performance was variable among the distance-based methods, with the Cavalli-Sforza and Edwards chord distance performing best, whereas Goldstein et al.'s (,µ)2 consistently performed poorly. Using Bayesian clustering, frequency and Bayesian methods we then attempted to determine the source of rock-wallabies which have recently recolonized an outcrop (Gardners) 8 km from the nearest rock-wallaby population. Results indicate that the population at Gardners originated via a recent dispersal event from the eastern end of Mt. Caroline. This is only the second published record of dispersal by rock-wallabies between habitat patches and is the longest movement recorded to date. Molecular techniques and methods of analysis are now available to allow detailed studies of dispersal in rock-wallabies and should also be possible for many other taxa. [source]


Glechoma hederacea (Lamiaceae) in North America: invasion history and current distribution,

FEDDES REPERTORIUM, Issue 1-2 2004
M. Scholler
Glechoma hederacea L. (Ground-ivy, Lamiaceae), a perennial mat-forming herb, is native to the temperate regions of Eurasia and was introduced elsewhere (South East Asia, New Zealand and North America). Based on data obtained from herbaria, literature, online and other data bases and field studies, we documented the invasion history and current distribution of this plant in North America. At present, the plant is recorded from all but two continental states of the USA and all southern provinces of Canada. There are two main ranges: the larger one covers mainly the eastern part of the U.S.A. and a smaller one stretches along the West Coast. While published records of Glechoma hederacea date from 1814, the oldest specimen is from 1829. During the 19th century the species spread westwards at a rate of approximately 30 km/year. The spread and present range of G. hederacea can only be explained by climatic factors (degree of oceanicity) and considering human activity. Especially long distance propagation of vegetative parts of the plants and the change of the environment that accompanies human settlements may have had a major influence on these processes. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) Glechoma hederacea L. (Lamiaceae) in Nordamerika: Invasionsgeschichte und derzeitige Verbreitung Glechoma hederacea (Gewöhnlicher Gundermann; Lamiaceae), eine im temperaten Eurasien beheimatete ausdauernde krautige Pflanze konnte sich als Neophyt in Südostasien, Neuseeland und Nordamerika etablieren. Basierend auf Daten aus der Literatur und Datenbanken, Belegdaten aus Herbarien und Felduntersuchungen werden die Ausbreitungsgeschichte der Art in Nordamerika und ihr gegenwärtiges Areal dokumentiert. Gegenwärtig ist die Art aus allen kanadischen Provinzen und mit Ausnahme von zwei Bundesstaaten auch von allen kontinentalen Bundesstaaten der USA dokumentiert. Es gibt zwei Hauptareale: ein großes, welches einen Großteil der östlichen USA einnimmt und ein kleineres an der Westküste. Der älteste Nachweis von 1814 von Glechoma hederacea stammt aus der Literatur, der älteste Beleg von 1829. Im Laufe des 19. Jahrhunderts breitete sich die Art mit einer Geschwindigkeit von etwa 30 km/Jahr nach Westen aus. Ausbreitungsgeschwindigkeit und das gegenwärtige Areal können nur mit Hilfe klimatischer (Ozeanität) und anthropogener Faktoren erklärt werden. Der Mensch trägt vor allem zur Verbreitung vegetativer Pflanzenteile bei und schafft in Siedlungen günstige Wachstumsbedingungen. [source]


Effects of habitat history and extinction selectivity on species-richness patterns of an island land snail fauna

JOURNAL OF BIOGEOGRAPHY, Issue 10 2009
Satoshi Chiba
Abstract Aim, Local-scale diversity patterns are not necessarily regulated by contemporary processes, but may be the result of historical events such as habitat changes and selective extinctions that occurred in the past. We test this hypothesis by examining species-richness patterns of the land snail fauna on an oceanic island where forest was once destroyed but subsequently recovered. Location, Hahajima Island of the Ogasawara Islands in the western Pacific. Methods, Species richness of land snails was examined in 217 0.25 × 0.25 km squares during 1990,91 and 2005,07. Associations of species richness with elevation, current habitat quality (proportion of habitat composed of indigenous trees and uncultivated areas), number of alien snail species, and proportion of forest loss before 1945 in each area were examined using a randomization test and simultaneous autoregressive (SAR) models. Extinctions in each area and on the entire island were detected by comparing 2005,07 records with 1990,91 records and previously published records from surveys in 1987,91 and 1901,07. The association of species extinction with snail ecotype and the above environmental factors was examined using a spatial generalized linear mixed model (GLMM). Results, The level of habitat loss before 1945 explained the greatest proportion of variation in the geographical patterns of species richness. Current species richness was positively correlated with elevation in the arboreal species, whereas it was negatively correlated with elevation in the ground-dwelling species. However, no or a positive correlation was found between elevation and richness of the ground-dwelling species in 1987,91. The change of the association with elevation in the ground-dwelling species was caused by greater recent extinction at higher elevation, possibly as a result of predation by malacophagous flatworms. In contrast, very minor extinction levels have occurred in arboreal species since 1987,91, and their original patterns have remained unaltered, mainly because flatworms do not climb trees. Main conclusions, The species-richness patterns of the land snails on Hahajima Island are mosaics shaped by extinction resulting from habitat loss more than 60 years ago, recent selective extinction, and original faunal patterns. The effects of habitat destruction have remained long after habitat recovery. Different factors have operated during different periods and at different time-scales. These findings suggest that historical processes should be taken into account when considering local-scale diversity patterns. [source]


The Indochinese,Sundaic zoogeographic transition: a description and analysis of terrestrial mammal species distributions

JOURNAL OF BIOGEOGRAPHY, Issue 5 2009
David S. Woodruff
Abstract Aim, We describe the distributions of mammal species between the Indochinese and Sundaic subregions and examine the traditional view that the two faunas show a transition near the Isthmus of Kra on the Thai,Malay peninsula. Location, Species distributions are described along a 2000-km transect from 20° N (northernmost Thailand) to 1° N (Singapore). Methods, For the 325 species of native non-marine mammals occurring along the transect we used published records to provide a database of their distributional records by degree of latitude. Results, Along the transect we found 128 Indochinese species with southern range limits, 121 Sundaic species with northern range limits, four un-assignable endemics and 72 widespread species. In total, 152 southern and 147 northern range limits were identified, and their distribution provides no evidence for a narrow faunal transition near the Isthmus of Kra (10°30, N) or elsewhere. Range limits of both bats and non-volant mammals cluster in northernmost peninsular Malaysia (5° N) and 800 km further north, where the peninsula joins the continent proper (14° N). The clusters of northern and southern range limits are not concordant but overlap by 100,200 km. Similarly, the range limits of bats and non-volant mammals cluster at slightly different latitudes. There are 30% fewer species and range limits in the central and northern peninsula (between 6 and 13° N), and 35 more widely distributed species have range gaps in this region. In addition, we found 70 fewer species at the southern tip of the peninsula (1° N) than at 3,4° N. Main conclusions, The deficiencies of both species and species range limits in the central and northern peninsula are attributed to an area effect caused by repeated sea-level changes. Using a new global glacioeustatic curve developed by Miller and associates we show that there were > 58 rapid sea-level rises of > 40 m in the last 5 Myr that would have resulted in significant faunal compression and local population extirpation in the narrow central and northern parts of the peninsula. This new global sea-level curve appears to account for the observed patterns of the latitudinal diversity of mammal species, the concentration of species range limits north and south of this area, the nature and position of the transition between biogeographical subregions, and possibly the divergence of the faunas themselves during the Neogene. The decline of species diversity at the southern end of the transect is attributed to a peninsula effect similar to that described elsewhere. [source]


Patterns in diversity of anurans along an elevational gradient in the Western Ghats, South India

JOURNAL OF BIOGEOGRAPHY, Issue 5 2007
Rohit Naniwadekar
Abstract Aim, To examine patterns in anuran species richness along an elevation gradient and identify factors that govern anuran species richness on a tropical elevational gradient. Location, Sampling for anurans was carried out in Kalakad Mundanthurai Tiger Reserve (KMTR) in the southern Western Ghats, India. Methods, Night-time sampling for anuran species richness was carried out from 20 November 2004 to 20 April 2005, during the north-east monsoon and dry seasons, using transects (50 × 2 m) and visual encounter surveys along the streams. The entire gradient was classified into thirteen 100-m elevation zones. Sampling at the alpha (single drainage basin) level was carried out in the Chinnapul River drainage basin (40,1260 m a.s.l.) and at the gamma (landscape) level in four drainage basins. Additionally, published records were used to arrive at an empirical species richness (S) for the entire landscape. Mid-Domain Null software was used to test for the possible influence of geometric constraints on anuran species at both the alpha and gamma levels. The influence of area under each elevation zone on empirical S was tested. The pattern in anuran species richness along the elevational gradient was investigated using: (1) species boundaries in each elevation zone and their habitat correlates, (2) abiotic factors as predictor variables, (3) mean snout vent lengths of anurans, and (4) correlation between the matrices of distance in the elevation zones based on microhabitat parameters and species composition. Cluster analysis on species presence,absence in the elevation zones was used to categorize the entire gradient into high, middle and low elevations. In these three elevation categories, pattern in composition of species was examined for endemism in Western Ghats,Sri Lanka biodiversity hotspot, uniqueness to an elevation zone, adaptations of adults and modes of breeding. Results, Species richness at the alpha level increased linearly with elevation, while at the gamma level there were three peaks. Maximum species richness was observed at the highest elevation (1200 m) at both the alpha and the gamma levels. The observed patterns differed significantly from mid-domain null predictions. The multi-modal pattern in species richness was a consequence of overlapping species range boundaries. Soil temperature was the best single measure in explaining the majority of variation in species richness at the alpha level (r2 = 0.846, P < 0.01). However, soil moisture was the best predictor when both the alpha and the gamma sites were pooled (r2 = 0.774, P < 0.01). Anuran body size decreased with an increase in elevation. The highest proportions of endemic and unique species were found at high elevations (> 700 m). The proportion of arboreal anurans increased from low to high elevation. Anurans exhibiting direct development were predominantly found at high elevations. Main conclusions, Geometric constraints did not influence anuran species richness along the elevational gradient. Overlapping range boundaries influenced species richness at the gamma level. Abiotic factors such as soil temperature and moisture influenced anuran species richness in the mountain range. The ,Massenerhebung effect' could be responsible for range restriction and endemism of anurans, differences in guilds and mode of reproduction. These findings highlight the importance of cloud forests for endemic anurans. [source]


The occurrence and ecology of a marine hydrobiid mudsnail in the southern hemisphere: the Knysna Estuary, South Africa

AFRICAN JOURNAL OF ECOLOGY, Issue 3 2002
R. S. K. BarnesArticle first published online: 6 AUG 200
Abstract Earlier published records of the gastropod Hydrobia from the warm temperate Knysna Lagoon on the Indian Ocean coast of South Africa are in error. Nevertheless, an animal hitherto identified as an Assiminea (Assimineidae) or as a Tomichia (Pomatiopsidae) is in fact a Hydrobia s.l., and it does occur intertidally within the Knysna system. The same species also occurs in salt pans in the cool temperate Great Berg Estuary on the Atlantic coast of South Africa. This extends the distribution of confirmed species of the dominant coastal hydrobiid mudsnails of the northern hemisphere into the southern hemisphere. H. knysnaensis (Krauss) occurs patchily at low density near the head of the Knysna Estuary in waters of low salinity. This appears to be a suboptimal habitat, and it is suggested that Hydrobia is restricted to this zone as a result of interference competition from potamidid mudwhelks and ocypodid crabs. The prevalence of potamidids and ocypodids in the tropics and in the temperate southern hemisphere may account for the rareness or absence of hydrobiids in these areas. Unlike its equally intertidal relative, the widespread North Atlantic/Arctic H. ulvae, H. knysnaensis develops directly like other Hydrobia. Résumé Les publications faisant état de la présence du gastéropode Hydrobia dans le lagon tempéré chaud de Knysna, sur la côte sud-africaine de l'océan Indien sont erronées. Néanmoins, un animal identifié jusqu'ici comme un Assiminea (Assimineidae) ou comme un Tomichia (Pomatiopsidae), est en fait un Hydrobia s.l. et il apparaît sur l'estran dans le système de Knysna. La même espèce se rencontre aussi dans des cuvettes saumâtres dans l'Estuaire de Great Berg, tempéré frais, sur la côte atlantique d'Afrique du Sud. Ceci élargit vers l'hémisphère sud la distribution d'une espèce confirmée des mollusques côtiers hydrobiinae dominants de l'hémisphère nord. H. knysnaensis (Krauss) se trouve çà et là, en faible quantité, au fond de l'estuaire de Knysna, dans des eaux de faible salinité. Ceci semble être un habitat sub-optimal, et on suggère qu'Hydrobia est confiné dans cette zone suite à la compétition avec les buccins potamilidae et avec les crabes ocypodidae. La prévalence de ces derniers sous les tropiques et dans la partie tempérée de l'hémisphère sud pourrait expliquer la rareté ou l'absence d'hydrobiidae dans ces régions. Contrairement à son parent H. ulvae, qui vit comme lui sur l'estran, très répandu dans l'Atlantique nord et dans l'Arctique, H. knysnaensis se développe directement, comme les autres Hydrobia. [source]


Laboratory environments are not conducive for allopatric speciation

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2002
A.-B. Florin
We review published records of laboratory experiments on peripatric and vicariance allopatric speciation to address the following three questions: (1) What was the true effect size of reproductive isolation? (2) Was the reproductive isolation persistent? (3) What influenced the development of isolation? Contrary to popular belief, laboratory evidence for allopatric speciation is quite weak. Assortative mating was only found among derived populations in vicariance experiments. Reproductive isolation against control populations was only intermittent, so there is reason to doubt if some cases showing significant reproductive isolation really should be attributed to speciation. The method of testing was at least as important as the speciation model. Experimental populations tested against each other were the most likely to demonstrate reproductive isolation. This study suggests that allopatric speciation experiments are more likely to yield conclusive results under divergent selection than under drift, and points to the benefits of large populations and many generations. [source]


Record of sea-level fall in tropical carbonates

BASIN RESEARCH, Issue 2 2009
Wolfgang Schlager
ABSTRACT Stratigraphic forward modeling and comparison with published case studies have been used to determine the controls and stability domains of two conceptual models concerning relative sea-level fall in carbonate sequence stratigraphy. In the standard model, deposition occurs principally during rise and stillstands of relative sea level; a continuous erosional unconformity develops during sea-level fall. The falling-stage systems tract model (FST) postulates significant deposition during sea-level fall. Sedimentological principles, numerical models and published case studies of tropical carbonate sequences indicate that presence or absence of FST is not simply a function of the rate of sea-level fall but depends on the balance of the rates of erosion, sea-level fall and carbonate production, whereby the FST is favoured by high production, slow erosion and slow sea-level fall. Case studies plotted in the parameter space spanned by these variables support the modeling results. The ranges of rates required for the FST in the modeling runs are common in the geologic record. Consequently, the FST can be expected to be more common in tropical carbonate rocks than published records, particularly seismic data, currently indicate. [source]


The Late Weichselian sea level history of the Kullen Peninsula in northwest Skåne, southern Sweden

BOREAS, Issue 2 2001
PER SANDGREN
The Kullen Peninsula in northwest Skåne, at the time of the Weichselian deglaciation an island surrounded by the Kattegat Sea, is the earliest known deglaciated area in Sweden. Sediment stratigraphic and mineral magnetic properties, combined with radiocarbon dating, were used to determine and date the isolation of present-day lake basins from the sea. Significant environmental changes, which reflect the isolations, are supported by previously published palaeoecological data and cannot be related to climate changes. Basins situated above the marine limit (ML) have short (in the order of centimetres) minerogenic sequences that are magnetically characterized by low concentrations of detrital magnetite. In contrast, the pre-isolation sediments in basins below the ML, especially those deposited in sheltered positions in the landscape, have thick sequences (in the order of metres) of authigenic greigite-bearing sediments. Age determinations of the isolation level are based on the AMS radiocarbon dating of terrestrial plant macrofossil remains and previously published pollen stratigraphical investigations. Supported by the upper level of a sandy beach deposit preserved on the generally steep till covered slopes, the marine limit can be determined to 88,89 m a.s.l., which developed at the regional deglaciation c. 17000 calendar years ago. The results indicate that the deglaciation shoreline level remained fairly constant, relative to the sea level, for c. 1000 years and was followed by a gentle regression. The presented shoreline displacement curve from the Kullen Peninsula extends c. 1000 calendar years further back in time than any previously published records from the Swedish west coast. [source]