Putative Promoter (putative + promoter)

Distribution by Scientific Domains

Terms modified by Putative Promoter

  • putative promoter region

  • Selected Abstracts


    Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361

    FEMS MICROBIOLOGY LETTERS, Issue 2 2009
    Hyungjae Lee
    Abstract Thurincin H, a bacteriocin produced by Bacillus thuringiensis SF361 isolated from honey, strongly inhibited the growth of Bacillus cereus F4552. The bacteriocin was purified by 65% ammonium sulfate precipitation of the culture supernatant, followed by octyl-sepharose CL-4B and reverse-phase HPLC. The molecular mass of the bacteriocin was determined to be 3139.51 Da and the 14 amino acids of the bacteriocin at the N-terminus were identified. The complete amino acid sequence of mature thurincin H was deduced from three structural genes, thnA1, thnA2, and thnA3 found in tandem repeats on the chromosome, all of which encode for the same bacteriocin, thurincin H. The genetic determinants for thurincin H biosynthesis consist of 10 ORFs, including three thurincin H structural genes. Northern hybridization elucidated that the transcription of all three bacteriocin structural genes was regulated by a putative promoter located upstream of thnA1. [source]


    Bone morphogenic protein 3 inactivation is an early and frequent event in colorectal cancer development

    GENES, CHROMOSOMES AND CANCER, Issue 6 2008
    Kim Loh
    Bone morphogenic proteins (BMPs) are members of the TGFB growth factor superfamily with well-described functions in bone formation. Although disrupted BMP signalling in tumor development has more recently been investigated, a role for BMP3 in colorectal cancer (CRC) has remained largely unexplored. The aim of this study was to investigate BMP3 disruption in CRCs in relation to both the traditional and serrated pathways of tumor progression. BMP3 was down-regulated as assessed by real-time PCR in 50 of 56 primary tumors (89%). Bisulfite sequencing of the putative promoter revealed extensive hypermethylation in the cell line HT29, in which expression could be restored by treatment with a methyltransferase inhibitor. Aberrant hypermethylation was observed in 33/60 (55%) tumors and was highly correlated with microsatellite instability (P < 0.01), the CpG Island Methylator Phenotype (P < 0.01), BRAF oncogene mutation (P < 0.01), and proximal location (P < 0.001). Methylation was also frequently observed in serrated and traditional adenomatous polyps (22/29, 76%). Re-introduction of BMP3 into cell lines revealed marked growth suppression supporting the functional relevance of this alteration in colorectal tumor development. This study provides molecular and functional data supporting the importance of BMP3 silencing as an early and frequent event in colorectal tumors progressing via the serrated and traditional pathways. © 2008 Wiley-Liss, Inc. [source]


    Molecular characterization of polyphosphate (PolyP) operon from Serratia marcescens

    JOURNAL OF BASIC MICROBIOLOGY, Issue 2 2006
    Seung-Jin Lee
    The polyphosphate (polyP) operon was cloned from a genomic library of Serratia marcescens KCTC 2172 by Southern hybridization using E. coli ppk gene as a probe. The polyP operon was composed of a polyphosphate promoter, polyphosphate kinase (ppk ) and exopolyphosphatase (ppx ). A potential CRP binding site and pho box sequence were found in the region upstream of the putative promoter in the regulatory region. The ppk gene comprises 2,063 nucleotides and encodes 686 amino acids yielding a protein with a molecular mass of 70 kDa. The ppx gene contains 1611 nucleotides and encodes 536 amino acids with a molecular 58 kDa. An E. coli strain transformed with the ppk gene had a 16-fold increased in polyphosphate kinase activity, while introduction of the ppx gene produced a 25-fold increase in polyphosphatase activity. E. coli strains transformed with ppk and ppx genes also displayed increased accumulation of polyphosphate. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Partition operon expression in the linear plasmid prophage N15 is controlled by both Sop proteins and protelomerase

    MOLECULAR MICROBIOLOGY, Issue 2 2003
    Boris D. Dorokhov
    Summary The temperate coliphage N15, unlike most low copy-number prokaryotic replicons, is maintained as a linear DNA molecule with covalently closed ends. Accurate partitioning of the plasmid prophage is assured by a close homologue of the sop locus of the F plasmid. However, the region upstream of the N15 sopAB genes contains multiple putative promoters, in contrast to F sop whose expression is driven by one negatively autoregulated promoter. In addition, the centromere of N15 is represented by four inverted repeats located at widely separated sites within the region essential for replication and control of lytic functions. We have analysed expression of N15 sop genes. We find that transcription of N15 sop is driven by two major promoters. The first, P1, is similar in sequence and function to the F sop promoter; it is repressed by Sop proteins. The second promoter, P2, is upstream of P1 and is several times stronger. It is insensitive to regulation by Sop proteins but is tightly repressed by protelomerase, the N15 enzyme that completes prophage replication by generating hairpin telomeres. These results establish a regulatory link between the partition system and other processes of N15 maintenance. [source]