Purification Tag (purification + tag)

Distribution by Scientific Domains


Selected Abstracts


Single-step recovery and solid-phase refolding of inclusion body proteins using a polycationic purification tag

BIOTECHNOLOGY JOURNAL, Issue 2 2006
My Hedhammar
Abstract A strategy for purification of inclusion body-forming proteins is described, in which the positively charged domain Zbasic is used as a fusion partner for capture of denatured proteins on a cation exchange column. It is shown that the purification tag is selective under denaturing conditions. Furthermore, the new strategy for purification of proteins from inclusion bodies is compared with the commonly used method for purification of His6 -tagged inclusion body proteins. Finally, the simple and effective means of target protein capture provided by the Zbasic tag is further successfully explored for solid-phase refolding. This procedure has the inherited advantage of combining purification and refolding in one step and offers the advantage of eluting the concentrated product in a suitable buffer. [source]


Protein Engineering Strategies for Selective Protein Purification

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 11 2005
M. Hedhammar
Abstract When producing and purifying recombinant proteins it is of importance to minimize the number of unit operations during the purification procedure. This is accomplished by increasing the selectivity in each step. Due to the high selectivity of affinity chromatography it has a widespread use in protein purification. However, most target proteins lack a suitable affinity ligand usable for capture on a solid matrix. A way to circumvent this obstacle is to genetically fuse the gene encoding the target protein with a gene encoding a purification tag. When the chimeric protein is expressed, the tag allows for specific capture of the fusion protein. In industrial-scale production, extension of the target protein often is unwanted since it might interfere with the function of the target protein. Hence, a purification scheme developed for the native protein is desired. In this review, different fusion strategies used for protein purification are discussed. Also, the development of ligands for selective affinity purification of native target proteins is surveyed. [source]


Efficient MILP formulations for the simultaneous optimal peptide tag design and downstream processing synthesis

AICHE JOURNAL, Issue 9 2009
Joćo M. Natali
Abstract Novel and efficient linear formulations are developed for the problem of simultaneously performing an optimal synthesis of chromatographic protein purification processes, and the concomitant selection of peptide purification tags, that result in a maximal process improvement. To this end, two formulations are developed for the solution of this problem: (1) a model that minimizes both the number of chromatographic steps in the final purification process flow sheet and the composition of the tag, by use of weighted objectives, while satisfying minimal purity requirements for the final product; and (2) a model that attempts to find the maximal attainable purity under constraints on the maximum number of separation techniques and tag size. Both models are linearized using a previously developed strategy for obtaining optimal piecewise linear approximations of nonlinear functions. Proposed are models to two case studies based on protein mixtures with different numbers of proteins. Results show that the models are capable of solving to optimality all the implemented cases with computational time requirements of under 1 s, on average. The results obtained are further compared with previous nonlinear and linear models attempting to solve the same problem, and, thus, show that the approach represents significant gains in robustness and efficiency. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Solid-phase biotinylation of antibodies,

JOURNAL OF MOLECULAR RECOGNITION, Issue 3 2004
Elizabeth Strachan
Abstract Biotinylation is an established method of labeling antibody molecules for several applications in life science research. Antibody functional groups such as amines, cis hydroxyls in carbohydrates or sulfhydryls may be modified with a variety of biotinylation reagents. Solution-based biotinylation is accomplished by incubating antibody in an appropriate buffered solution with biotinylation reagent. Unreacted biotinylation reagent must be removed via dialysis, diafiltration or desalting. Disadvantages of the solution-based approach include dilution and loss of antibody during post-reaction purification steps, and difficulty in biotinylation and recovery of small amounts of antibody. Solid-phase antibody biotinylation exploits the affinity of mammalian IgG-class antibodies for nickel IMAC (immobilized metal affinity chromatography) supports. In this method, antibody is immobilized on a nickel-chelated chromatography support and derivitized on-column. Excess reagents are easily washed away following reaction, and biotinylated IgG molecule is recovered under mild elution conditions. Successful solid phase labeling of antibodies through both amine and sulfhydryl groups is reported, in both column and mini-spin column formats. Human or goat IgG was bound to a Ni-IDA support. For sulfhydryl labeling, native disulfide bonds were reduced with TCEP, and reduced IgG was biotinylated with maleimide,PEO2 biotin. For amine labeling, immobilized human IgG was incubated with a solution of NHS,PEO4 biotin. Biotinylated IgG was eluted from the columns using a buffered 0.2,M imidazole solution and characterized by ELISA, HABA/avidin assay, probing with a streptavidin,alkaline phosphatase conjugate, and binding to a monomeric avidin column. The solid phase protocol for sulfhydryl labeling is significantly shorter than the corresponding solution phase method. Biotinylation in solid phase is convenient, efficient and easily applicable to small amounts of antibody (e.g. 100,,g). Antibody biotinylated on-column was found to be equivalent in stability and antigen-recognition ability to antibody biotinylated in solution. Solid-phase methods utilizing Ni-IDA resin have potential for labeling nucleic acids, histidine-rich proteins and recombinant proteins containing polyhistidine purification tags, and may also be applicable for other affinity systems and labels. Copyright © 2004 John Wiley & Sons, Ltd. [source]