Home About us Contact | |||
Pure Water (pure + water)
Selected AbstractsRecyclable Heterogeneous Palladium Catalysts in Pure Water: Sustainable Developments in Suzuki, Heck, Sonogashira and Tsuji,Trost ReactionsADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1 2010Marc Lamblin Abstract This review summarizes the progress made essentially these last ten years on heterogeneous palladium catalysis in pure water. The work covers four important palladium-catalyzed transformations for carbon-carbon bond formation: Suzuki, Heck, Sonogashira and Tsuji,Trost reactions. The discussion focuses on the efficiency and reusability of the heterogeneous catalysts as well as on the experimental conditions from a sustainable chemistry point of view. The review is introduced by a discussion on mechanistic aspects inherent to heterogeneous catalysis. [source] Metathesis in Pure Water Mediated by Supramolecular AdditivesADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 3 2009Thomas Brendgen Abstract Supramolecular, water-soluble additives based on calix[n]arenes exhibit a beneficial influence on the ring-closing and cross metathesis of non-polar substrates in pure aqueous medium using standard Grubbs-II and Hoveyda-II catalysts. The catalytic activity observed in water is virtually the same as that in pure methanol. Quantitative yields of metathesis product can be achieved under mild aerobic conditions in/on water by (micro)solubilization of both the catalyst and starting materials by the macrocycles. [source] Environmentally Friendly and Efficient Synthesis of Various 1,4-Dihydropyridines in Pure Water.CHEMINFORM, Issue 30 2006Guan-Wu Wang Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source] Visualization of the distant dipolar field: A numerical studyCONCEPTS IN MAGNETIC RESONANCE, Issue 6 2009Stefan Kirsch Abstract The magnetization of liquid water in an external field generates an intrinsic magnetic field in the sample called the distant dipolar field (DDF). To visualize the spatial distribution of the DDF a numerical study was performed for the case of liquid,state 1H NMR at 7 T. 2D maps of the frequency offset caused by the DDF in pure water were calculated for homogenously magnetized spherical and cylindrical samples as well as for the case of a spatially modulated magnetization distribution occurring e.g., in CRAZED (Cosy Revamped by Asymmetric Z-Gradient Echo Detection) experiments. The calculation yielded DDF induced frequency offsets in the range of 0.58 Hz to 10.24 Hz inside the homogeneously magnetized cylinders, while DDF-induced frequency offsets ,10,5 Hz were obtained inside the sphere. The calculated frequency offsets were in good agreement with analytical results available for a sphere and an infinitely long cylinder. In the case of a spatially modulated magnetization distribution, DDF-induced frequency offsets with maximum values of +0.83 Hz were obtained inside the sphere. The presented 2D maps of the DDF-induced frequency offset have tutorial character and may help to visualize this phenomenon in a direct manner. © 2009 Wiley Periodicals, Inc. Concepts Magn Reson Part A 34A:357,364, 2009. [source] Spectrally based remote sensing of river bathymetryEARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2009Carl J. Legleiter Abstract This paper evaluates the potential for remote mapping of river bathymetry by (1) examining the theoretical basis of a simple, ratio-based technique for retrieving depth information from passive optical image data; (2) performing radiative transfer simulations to quantify the effects of suspended sediment concentration, bottom reflectance, and water surface state; (3) assessing the accuracy of spectrally based depth retrieval under field conditions via ground-based reflectance measurements; and (4) producing bathymetric maps for a pair of gravel-bed rivers from hyperspectral image data. Consideration of the relative magnitudes of various radiance components allowed us to define the range of conditions under which spectrally based depth retrieval is appropriate: the remotely sensed signal must be dominated by bottom-reflected radiance. We developed a simple algorithm, called optimal band ratio analysis (OBRA), for identifying pairs of wavelengths for which this critical assumption is valid and which yield strong, linear relationships between an image-derived quantity X and flow depth d. OBRA of simulated spectra indicated that water column optical properties were accounted for by a shorter-wavelength numerator band sensitive to scattering by suspended sediment while depth information was provided by a longer-wavelength denominator band subject to strong absorption by pure water. Field spectra suggested that bottom reflectance was fairly homogeneous, isolating the effect of depth, and that radiance measured above the water surface was primarily reflected from the bottom, not the water column. OBRA of these data, 28% of which were collected during a period of high turbidity, yielded strong X versus d relations (R2 from 0·792 to 0·976), demonstrating that accurate depth retrieval is feasible under field conditions. Moreover, application of OBRA to hyperspectral image data resulted in spatially coherent, hydraulically reasonable bathymetric maps, though negative depth estimates occurred along channel margins where pixels were mixed. This study indicates that passive optical remote sensing could become a viable tool for measuring river bathymetry. Copyright © 2009 John Wiley & Sons, Ltd. [source] Threatened obligatory riverine fishes in human-modified Polish riversECOLOGY OF FRESHWATER FISH, Issue 1-2 2000T. Penczak Abstract , The fate of obligatory riverine fish species (rheophils), which are the objects of anglers' exploitation (chub ,Leuciscus cephalus, nase ,Chondrostoma nasus, barbel ,Barbus barbus, gudgeon ,Gobio gobio), and brown trout (Salmo trutta m. fario) and grayling (Thymallus thymallus) (in the Gwda River basin only), were investigated in large alluvial rivers (Pilica and Warta) and in the medium-sized Gwda River basin. The Pilica (1973) and the Warta (1986,1987) were divided by large dams without fish ladders in their middle courses. The Gwda River was divided by only a few dams along its course, but its tributaries carrying pure water had numerous small dams that supplied water for fish farms. Other stresses influencing fish populations in these rivers were: pollution, overfishing, hydroelectric plants and bank revetments. Because the listed stresses occurred alternately and at various periods of time in these rivers, this enabled attributing the cause for extinction and reduction of the abundance and distribution. In the salmon Gwda River basin, a drastic decrease in spatial distribution and reduction of occurrence ranges of brown trout, grayling and barbel was evident in respect to the first study period (1980s) in the 1990s. In the large, alluvial Pilica River, nase, barbel and dace are on the edge of extinction and chub and gudgeon are vulnerable. In the Warta's tailwater, barbel is an extinct species, and chub, dace and gudgeon are vulnerable ones. In a site in the backwater, none of the above mentioned species became extinct, but their abundance and occurrence frequency decreased a bit in respect to the pre-impoundment period. Roach-generalist, which was used in this research as a "control" species, increased in abundance in all 3 rivers. These investigations univocally proved that the dams cause catastrophic stress for obligatory riverine species., [source] Influence of Aprotic Solvent on Selectivity of an Amperometric Sensor with Nafion MembraneELECTROANALYSIS, Issue 5 2006B. Chachulski Abstract This paper presents the results of investigation on selectivity of the sulfur dioxide amperometric sensor with Nafion membrane in the presence of carbon monoxide and nitrogen dioxide as the interferents. There have been compared selectivity coefficients, for the sensors containing the following internal electrolytes: solution of sulfuric acid (concentration 5,mol dm,3) in pure water (A) and solution of sulfuric acid (concentration 5,mol dm,3) in mixed solvent dimethylsulfoxide-water with an DMSO: H2O mole ratio of 1,:,2 (B). Values of the selectivity coefficients have been calculated based on the calibration curves. Analysis of both calibration curves and selectivity coefficients plays a significant role in optimization of a working point of a particular sensor. The investigated sensor operates in a three-electrode system, where the working and counter electrodes are vacuum sublimation deposited on the membrane surface. [source] Utilization of a Copper Solid Amalgam Electrode for the Analytical Determination of AtrazineELECTROANALYSIS, Issue 22 2005Djenaine De, Souza Abstract A copper solid amalgam electrode was prepared and used for the voltammetric determination of atrazine in natural water samples by square wave voltammetry. This electrode is a convenient substitute for the hanging mercury electrode since it is selective, sensitive, reliable and inexpensive and presents low toxicity characteristic. The detection limit of atrazine obtained in pure water (laboratory samples) was shown to be lower than the maximum limit of residue established for natural water by the Brazilian Environmental Agency. The relative standard deviation for 10 different measurements was found to be only 3.98% in solutions containing 8.16×10,6,mol L,1 of atrazine. In polluted stream water samples, the recovery measurements were approximately 70.00%, sustaining the applicability of the proposed methodology to the analysis of atrazine in such matrices. [source] Analysis of sub-ppb levels of Fe(II), Co(II), and Ni(II) by electrokinetic supercharging preconcentration, CZE separation, and in-capillary derivatizationELECTROPHORESIS, Issue 20 2007Marek Urbanek Abstract The analysis of sub-ppb levels of Fe(II), Co(II), and Ni(II) in heat exchanger fluids of nuclear power plants is needed to monitor corrosion. A method involving preconcentration with electrokinetic supercharging (electrokinetic injection with transient ITP), CZE separation, and in-capillary derivatization with ortho -phenanthroline (o -Phe) for direct UV detection was thus developed. First, a multizone BGE was loaded into the capillary by successive hydrodynamic introduction of zones of (i) o -Phe-containing BGE, (ii) BGE for the zonal separation, and (iii) ammonium-based leading electrolyte. Metal cations were electrokinetically injected and stacked at the capillary inlet behind this last leading zone. Finally, a terminating electrolyte zone was hydrodynamically introduced. When a constant voltage was applied, metal ions kept on concentrating isotachophoretically, then separated in CZE mode, were complexed by migrating through an o -Phe zone, and finally detected by direct absorbance. To detect extremely thin peaks, it was attempted for the first time to focus the derivatization reagent by inducing a second transient ITP, before labeling analytes, already separated in CZE mode. With this arrangement, LODs were about 30,ppt in pure water. In heat exchanger fluid matrices containing 1000,ppm bore and 2,ppm lithium, only Fe(II) cation was detected among the three cations of interest at the 1,ppb level using the present method, and its LOD was about ten times higher, due to the lower loading rate during electrokinetic injection. [source] Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzo- P -dioxins,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2009Jeffrey M. Buth Abstract Triclosan (TCS; 5-chloro-2-(2,4-dichlorophenoxy)phenol), a common antimicrobial agent, may react with residual chlorine in tap water during transport to wastewater treatment plants or during chlorine disinfection of wastewater, generating chlorinated TCS derivatives (CTDs): 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol (4-Cl-TCS), 5,6-dichloro-2-(2,4-dichlorophenoxy)phenol (6-C1-TCS), and 4,5,6-trichloro-2-(2,4-dichlorophenoxy)phenol (4,6-Cl-TCS). The photochemistry of CTDs was investigated due to the potential formation of polychlorodibenzo- p -dioxin (PCDD) photoproducts. Photolysis rates were highly dependent upon CTD speciation, because the phenolate species degraded 44 to 586 times faster than the phenol forms. Photolysis quantum yield values for TCS, 4-Cl-TCS, 6-Cl-TCS, and 4,6-Cl-TCS of 0.39, 0.07, 0.29, and 0.05, respectively, were determined for the phenolate species. Photolyses performed in Mississippi River and Lake Josephine (USA) waters gave similar quantum yields as buffered, pure water at the same pH, indicating that indirect photolysis processes involving photosensitization of dissolved organic matter are not competitive with direct photolysis. The photochemical conversion of the three CTDs to PCDDs under solar irradiation was confirmed in natural and buffered, pure water at yields of 0.5 to 2.5%. The CTD-derived PCDDs possess higher toxicities than 2,8-dichlorodibenzo- p -dioxin, a previously identified photoproduct of TCS, due to their higher chlorine substitution in the lateral positions. The load of TCS- and CTD-derived PCDDs to United States surface waters is estimated to be between 46 and 92 g toxicity equivalent units per year. Other identified photoproducts of each CTD were 2,4-dichlorophenol and reductive dechlorination products. [source] Controlled release experiments with nonylphenol in aquatic microcosmsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2003Gerd Pfister Abstract A method of controlled release of technical nonylphenol (tNP) was developed to simulate realistic exposure in ecotoxicological studies on aquatic organisms. The direct addition of tNP from an aqueous stock solution into 50 ml of water led to a concentration decrease of 80 to 90% weight/volume (w/v) from nominal values within 48 h. The inclusion of tNP in semipermeable low-density polyethylene (LDPE) lay-flat tubing (controlled-release devices [CRDs]) of different length allowed a continuous release into pure water at a rate of about 30 ,g/cm2/d. Using CRDs in aquaria containing 15 L of 63-,m-filtered lake water, eight different concentrations with maxima between 38.1 and 326.7 ,g/L were maintained for 11 d. During a second experiment in 15-L aquaria, five replicates of three concentrations were maintained using CRDs of the same length. Concentrations after 38 d varied between 0.1 and 6.7, 26.1 and 41.9, and 49.9 and 76.0 ,g/L. In aquatic microcosms containing 230 L of lake water, a natural plankton community, 50 L of sediment, and macrophytes, seven different tNP concentrations (maxima 11,120.1 ,g/L) were maintained over 45 d using CRDs of different length. They were replaced after 14 and 25 d because release of tNP was slower than predicted from laboratory experiments. Concentrations in the top 1-cm sediment layer were on average 19 times higher during the dosing period than concentrations in the water at the same time. In the sediments, different levels of applications led to concentrations that differed less distinctly than in the water. This method is suitable for exposing aquatic organisms continuously to constant, ecologically relevant concentrations of NP and represents an improvement over previous dosing methods in which exposure varied. [source] Graphite Oxide as a Photocatalyst for Hydrogen Production from WaterADVANCED FUNCTIONAL MATERIALS, Issue 14 2010Te-Fu Yeh Abstract A graphite oxide (GO) semiconductor photocatalyst with an apparent bandgap of 2.4,4.3,eV is synthesized by a modified Hummers' procedure. The as-synthesized GO photocatalyst has an interlayer spacing of 0.42,nm because of its moderate oxidation level. Under irradiation with UV or visible light, this GO photocatalyst steadily catalyzes H2 generation from a 20,vol % aqueous methanol solution and pure water. As the GO sheets extensively disperse in water, a cocatalyst is not required for H2 generation over the GO photocatalyst. During photocatalytic reaction, the GO loses some oxygen functional groups, leading to bandgap reduction and increased conductivity. This structural variation does not affect the stable H2 generation over the GO. The encouraging results presented in this study demonstrate the potential of graphitic materials as a medium for water splitting under solar illumination. [source] Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanariusFUNCTIONAL ECOLOGY, Issue 6 2000Heil M. Abstract 1Many plants produce extrafloral nectar (EFN) to nourish ants and other animals which defend them against herbivores. We aimed to find reasons for the high variability in amounts of EFN produced by most plant species. We investigated the influence of several biotic and abiotic factors (time of day, leaf age, nectar removal and leaf damage) on secretion rates of EFN in the common south-east Asian pioneer tree species, Macarangatanarius (L.) Muell. Arg. 2In most experiments leaves were washed with pure water and bagged in nets to protect them against nectar-collecting insects, and nectar was collected and quantified 24 h later. Six soluble sugars and up to eight amino acids were detected in nectar samples derived from untreated, field-grown plants. Total amounts of soluble substances varied more than the relative composition of EFN. 3Nectar secretion rates were highest on young, expanded leaves. A diurnal pattern with a secretion peak in the first 2 h after dusk was detected in the field. Nectar removal had a positive effect and its accumulation a negative effect on further EFN production. Artificial leaf damage (punching leaves with a needle or removing parts of the leaf blade with scissors) led to a significant induction of EFN production for the next 3 days. 4Extrafloral nectar of M. tanarius was secreted in complex patterns influenced by different biotic and abiotic factors; its production appeared to be adapted temporally and spatially in order to ensure optimal use of invested resources. [source] Aqueous fluids at elevated pressure and temperatureGEOFLUIDS (ELECTRONIC), Issue 1-2 2010A. LIEBSCHER Abstract The general major component composition of aqueous fluids at elevated pressure and temperature conditions can be represented by H2O, different non-polar gases like CO2 and different dissolved metal halides like NaCl or CaCl2. At high pressure, the mutual solubility of H2O and silicate melts increases and also silicates may form essential components of aqueous fluids. Given the huge range of P,T,x regimes in crust and mantle, aqueous fluids at elevated pressure and temperature are highly variable in composition and exhibit specific physicochemical properties. This paper reviews principal phase relations in one- and two-component fluid systems, phase relations and properties of binary and ternary fluid systems, properties of pure H2O at elevated P,T conditions, and aqueous fluids in H2O,silicate systems at high pressure and temperature. At metamorphic conditions, even the physicochemical properties of pure water substantially differ from those at ambient conditions. Under typical mid- to lower-crustal metamorphic conditions, the density of pure H2O is , the ion product Kw = 10,7.5 to approximately 10,12.5, the dielectric constant , = 8,25, and the viscosity , = 0.0001,0.0002 Pa sec compared to , Kw = 10,14, , = 78 and , = 0.001 Pa sec at ambient conditions. Adding dissolved metal halides and non-polar gases to H2O significantly enlarges the pressure,temperature range, where different aqueous fluids may co-exist and leads to potential two-phase fluid conditions under must mid- to lower-crustal P,T conditions. As a result of the increased mutual solubility between aqueous fluids and silicate melts at high pressure, the differences between fluid and melt vanishes and the distinction between fluid and melt becomes obsolete. Both are completely miscible at pressures above the respective critical curve giving rise to so-called supercritical fluids. These supercritical fluids combine comparably low viscosity with high solute contents and are very effective metasomatising agents within the mantle wedge above subduction zones. [source] A Highly Sensitive Hybrid Colorimetric and Fluorometric Molecular Probe for Cyanide Sensing Based on a Subphthalocyanine Dye,ADVANCED FUNCTIONAL MATERIALS, Issue 9 2006E. Palomares Abstract A highly sensitive, selective colorimetric and fluorometric molecular probe based on a subphthalocyanine dye has been developed for cyanide-anion determination in aqueous solution. It has also been shown that a carboxysubphthalocyanine derivative can be covalently anchored to transparent mesoporous nanocrystalline high-surface-area metal oxide films to detect low concentrations of cyanide anion in pure water with no interference from other anionic or cationic species. [source] Experimental research of boiling heat transfer of smooth and screwed tubeHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 2 2007Maode Li Abstract In this paper, based on the analog theory of heat transfer research, we performed an analog experiment on boiling heat transfer in smooth tube and screwed tubes. These are widely used in the high pressure generator of lithium bromide absorption refrigeration. From the experimental research, we obtained a series of results on the boiling heat transfer of a single smooth tube and three screwed tubes. The working condition is near the zone of bubble boiling and the overheat wall temperature ranges from 2,7 °C, with a fluid medium of pure water and salt water solution. These results agreed well with the known results, and are significant for the practical design and application of a high pressure generator of lithium bromide absorption for refrigeration. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(2): 74,84, 2007; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/htj.20145 [source] A Water-Gate Organic Field-Effect TransistorADVANCED MATERIALS, Issue 23 2010Loig Kergoat High-dielectric-constant insulators, organic monolayers, and electrolytes have been successfully used to generate organic field-effect transistors operating at low voltages. Here, we report on a device gated with pure water. By replacing the gate dielectric by a simple water droplet, we produce a transistor that entirely operates in the field-effect mode of operation at voltages lower than 1,V. This result creates opportunities for sensor applications using water-gated devices as transducing medium. [source] Pool boiling on a superhydrophilic surfaceINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 2 2003Y. Takata Abstract Titanium Dioxide, TiO2, is a photocatalyst with a unique characteristic. A surface coated with TiO2 exhibits an extremely high affinity for water when exposed to UV light and the contact angle decreases nearly to zero. Inversely, the contact angle increases when the surface is shielded from UV. This superhydrophilic nature gives a self-cleaning effect to the coated surface and has already been applied to some construction materials, car coatings and so on. We applied this property to the enhancement of boiling heat transfer. An experiment involving the pool boiling of pure water has been performed to make clear the effect of high wettability on heat transfer characteristics. The heat transfer surface is a vertical copper cylinder of 17 mm in diameter and the measurement has been done at saturated temperature and in a steady state. Both TiO2 -coated and non-coated surfaces were used for comparison. In the case of the TiO2 -coated surface, it is exposed to UV light for a few hours before experiment and it is found that the maximum heat flux (CHF) is about two times larger than that of the uncoated surface. The temperature at minimum heat flux (MHF) for the superhydrophilic surface is higher by 100 K than that for the normal one. The superhydrophilic surface can be an ideal heat transfer surface. Copyright © 2002 John Wiley & Sons, Ltd. [source] Recyclable Heterogeneous Palladium Catalysts in Pure Water: Sustainable Developments in Suzuki, Heck, Sonogashira and Tsuji,Trost ReactionsADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1 2010Marc Lamblin Abstract This review summarizes the progress made essentially these last ten years on heterogeneous palladium catalysis in pure water. The work covers four important palladium-catalyzed transformations for carbon-carbon bond formation: Suzuki, Heck, Sonogashira and Tsuji,Trost reactions. The discussion focuses on the efficiency and reusability of the heterogeneous catalysts as well as on the experimental conditions from a sustainable chemistry point of view. The review is introduced by a discussion on mechanistic aspects inherent to heterogeneous catalysis. [source] Amphiphilic Block Polypeptide-Type Ligands for Micellar Catalysis in WaterADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 10 2009Shlomi Elias Abstract Novel amphiphilic block polypeptide ligands were synthesized and showed excellent behavior in the metal-catalyzed organic transformations in pure water. The catalytic activity and/or recycling properties of the catalysts are the result of the micellar structure of the polymeric system in water. [source] A high sensitivity pinhole camera for soft condensed matterJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-1 2003Thomas Zemb A significant improvement in the sensitivity of a Huxley-Holmes design for a small angle X-ray scattering camera is obtained by separating the mirror and the monochromator. The "separated optics" camera described in this paper involves a long X-ray mirror close to a point X-ray source associated with a curved focusing crystal located close to the sample. The sample area is located at half the distance between the source and detector planes. Diffuse scattering produced by the mirror is not incident on the focusing crystal, thus reducing the background signal. Complete elimination of hard X-rays allows precise calibration and hence absolute determination of sample cross-section by means of a semi-transparent beam-stop. In pinhole geometry, the flux corresponds to a ca. 107 photons/s through the sample, collimated to q=10 -2 Å -1 in scattering vector range. This allows determination of scattered intensities of the order of 10 -3 cm -1, corresponding to the scattering related to isothermal compressibility of less than 0.1 mm of pure water. Values of absolute intensities for water as well as convenient widespread buffer solutions are shown, in order to be usable for calibration as secondary standards. As solid reference sample, the widely studied Lupolentm, a semi-crystalline polymer- is calibrated. The high- q limit (q, 4.5 nm,1 ) of a porous calcite sample can be used as a secondary standard for specific area determination of solid/solid or solid-liquid dispersions. [source] Properties of a poly(acrylamide- co -diallyl dimethyl ammonium chloride) hydrogel synthesized in a water,ionic liquid binary systemJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010Qian Zhao Abstract A novel copolymer hydrogel, poly(acrylamide- co -diallyl dimethyl ammonium chloride), was prepared by the radical copolymerization of acrylamide and diallyl dimethyl ammonium chloride in an ionic liquid (IL),water binary system in the presence of the crosslinker N,N,-methylene bisacrylamide. The equilibrium swelling ratios of the hydrogels synthesized in the IL,water binary system increased with the content of IL and were remarkably higher than that of the gel synthesized in water. Differential scanning calorimetry measurements showed that the glass-transition temperatures of the dry hydrogels that were synthesized in the IL,water binary system were remarkably lower than that of the gel synthesized in pure water. The mechanical properties of the gels synthesized in both water and the IL,water binary system were characterized with a universal material-testing machine. The results show that fracture toughness of the hydrogels was improved when they were synthesized in the IL,water binary system. The gel shrank under a direct-current electric field. The response rates of the gels that were synthesized with the IL,water binary system were faster than that of the gel synthesized in water. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] A simple method to obtain a swollen PVA gel crosslinked by hydrogen bondsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2009Emiko Otsuka Abstract A simple method to obtain a physically crosslinked poly(vinyl alcohol) (PVA) hydrogel is reported. In this technique, the PVA solution in pure water was simply cast at room temperature without using any additional chemical. The gelation proceeded during the dehydration after casting the PVA solution into a mold. After the completion of gelation, the swelling ratio of the gel in its equilibrium was measured whenever the solvent water was repeatedly exchanged. The weight gradually decreased due to the elution of non-crosslinked polymers into the solvent, and became constant after sufficient water exchange. The measurements using a Fourier Transform infrared spectroscopy and an X-ray diffraction suggested that the crosslinks due to hydrogen bonds and microcrystals were formed during the dehydration process of the PVA solution. We concluded that the sample obtained by the present method is a physically crosslinked polymer network, insoluble in water, i.e., a swollen gel in water. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Silicone oil: An effective absorbent for the removal of hydrophobic volatile organic compoundsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2010Guillaume Darracq Abstract BACKGROUND: Hydrophobic volatile organic compounds (VOCs), such as toluene, dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), are poorly soluble in water and classical air treatment processes like chemical scrubbers are not efficient. An alternative technique involving an absorption step in an organic solvent followed by a biodegradation phase was proposed. The solvent must fulfil several characteristics, which are key factors of process efficiency, and a previous study allowed polydimethylsiloxane (or PDMS, i.e. silicone oil) to be selected for this purpose. The aim of this paper was to determine some of its characteristics like absorption capacity and velocity performances (Henry's constant, diffusivity and mass transfer coefficient), and to verify its non-biodegradability. RESULTS: For the three targeted VOCs, Henry's constants in silicone oil were very low compared to those in water, and solubility was infinite. Diffusivity values were found to be in the range 10,10 to 10,11 m2 s,1 and mass transfer coefficients did not show significant differences between the values in pure water and pure silicone oil, in the range 1.0 × 10,3 to 4.0 × 10,3 s,1 for all the VOCs considered. Silicone oil was also found to be non-biodegradable, since its biological oxygen demand (BOD5) value was zero. CONCLUSION: Absorption performances of silicone oil towards toluene, DMS and DMDS were determined and showed that this solvent could be used during the first step of the process. Moreover, its low biodegradability and its absence of toxicity justify its use as an absorbent phase for the integrated process being considered. Copyright © 2010 Society of Chemical Industry [source] Chemopreventive effects of rofecoxib and folic acid on gastric carcinogenesis induced by N-methyl-N,-nitro-N-nitrosoguanidine in ratsJOURNAL OF DIGESTIVE DISEASES, Issue 3 2006Su Juan FEI OBJECTIVES: Epidemiological and experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) are chemopreventive agents of gastrointestinal cancers, but few studies on gastric cancer have been carried out. A decrease in folic acid supplement and subsequent DNA hypomethylation are related to gastrointestinal cancers, and it has been shown that high-dose folic acid may interfere with gastric carcinogenesis in dogs. The objective of this study was to investigate the effects of rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, and folic acid on the chemoprevention of gastric cancer induced by N-methyl-N,-nitro-N-nitrosoguanidine (MNNG) in Wistar rats, and to evaluate the cell proliferation of gastric mucosa in different experimental groups. METHODS: Eighty male Wistar rats were randomly divided into five groups (16 rats in each group). In the control group, the rats were given pure water and basal diet. In the MNNG group, the rats received MNNG in drinking water (100 mg/L) and basal diet. In the MNNG + low-dose rofecoxib group, the rats were given MNNG and rofecoxib 5 mg/kg per day with basal diet. In the MNNG + high-dose rofecoxib group, the rats were given MNNG and rofecoxib 15 mg/kg per day with basal diet. In the MNNG + folic acid group, the rats were given MNNG and folic acid 5 mg/kg per day with basal diet. The experiment was terminated at 50 weeks, and all rats were killed. Blood samples of 3 mL were obtained for measurement of serum folic acid concentrations in the control group, the MNNG group and the MNNG + folic acid group by using chemiluminescent method. The stomach was removed from all rats for histopathological examination and immunohistochemical study. Proliferating cell nuclear antigen (PCNA) expression in gastric epithelial cells was also determined. RESULTS: In the MNNG group, five of 11 rats (45.5%) developed gastric cancer, while in all other four groups no gastric cancer was found (P < 0.05). The positivity rate of PCNA expression in the cancerous tissues was significantly higher than that in the non-cancerous tissues (80.0%vs 14.1%, P < 0.05). The positivity rate of PCNA expression in the gastric mucosal cells of the MNNG group was significantly higher than that in the other four groups. The mean serum folic acid concentration of rats was significantly higher in the MNNG + folic acid group (193.70 ± 60.73 ng/mL) than those in the control group (84.21 ± 25.26 ng/mL) and the MNNG group (72.27 ± 16.70 ng/mL, P < 0.05). It was shown that both low- and high-dose rofecoxib as well as folic acid interfered with the development of gastric cancer induced by MNNG in Wistar rats. CONCLUSIONS: The results indicate that rofecoxib as well as folic acid interferes with gastric carcinogenesis induced by MNNG in Wistar rats, and the suppression of gastric cell proliferation may play a crucial role in the chemoprevention of gastric cancer by rofecoxib and folic acid. The higher serum folic acid concentration of rats may play an important role in the prevention of gastric cancer. [source] Echo combination to reduce proton resonance frequency (PRF) thermometry errors from fatJOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2008Viola Rieke PhD Abstract Purpose To validate echo combination as a means to reduce errors caused by fat in temperature measurements with the proton resonance frequency (PRF) shift method. Materials and Methods Computer simulations were performed to study the behavior of temperature measurement errors introduced by fat as a function of echo time. Error reduction by combining temperature images acquired at different echo times was investigated. For experimental verification, three echoes were acquired in a refocused gradient echo acquisition. Temperature images were reconstructed with the PRF shift method for the three echoes and then combined in a weighted average. Temperature measurement errors in the combined image and the individual echoes were compared for pure water and different fractions of fat in a computer simulation and for a phantom containing a homogenous mixture with 20% fat in an MR experiment. Results In both simulation and MR measurement, the presence of fat caused severe temperature underestimation or overestimation in the individual echoes. The errors were substantially reduced after echo combination. Residual errors were about 0.3°C for 10% fat and 1°C for 20% fat. Conclusion Echo combination substantially reduces temperature measurement errors caused by small fractions of fat. This technique then eliminates the need for fat suppression in tissues such as the liver. J. Magn. Reson. Imaging 2007. © 2007 Wiley-Liss, Inc. [source] Experimental and thermal analysis of washing the packed ice bed in wash columnsAICHE JOURNAL, Issue 11 2009Frank G. F. Qin Abstract In the process of freeze concentration (FC), the main problems in operating the counter-current wash column used for separating ice from ice slurries are channeling and viscous fingering. These phenomena lead to the mixing of pure water and mother liquid, as well as entrainment of mother liquid within the removed ice. Experimental and thermal analysis of the wash front interface in this research relates ice melting and wash front breakthrough with the operating conditions (such as the wash water temperature, ice bed temperature and porosity). Criteria for wash front stability are proposed. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Recent advances in the assessment of the ratios of cortisol to cortisone and of some of their metabolites in urine by LC-MS-MSJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2009Alessandro Saba Abstract A previously reported method for the assessment of the ratio of tetrahydrocortisol (THF) + allo-tetrahydrocortisol (A-THF) to tetrahydrocortisone (THE) by HPLC-MS-MS has been significantly improved, in order to increase either ruggedness and reliability. That was achieved by the introduction of an on-line sample cleanup stage, which made use of a perfusion column as a solid phase microextraction (SPE) cartridge. The set of analytes was expanded, by introducing cortisol and cortisone, whose ratio supply additional diagnostic information. The response factors of both THF and A-THF has been checked, resulting almost identical, as well as the influence of the matrix on the calibration curves which, although different for water and urine, had similar effect on the ratios of interest. As a consequence, the calibration solutions can be prepared in pure water. The influence of several different storage procedures has also been tested, resulting in no substantial effect on the final result. Finally, the improved method has been used to run real samples from healthy volunteers, with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd. [source] Effect of buffer cations and of H3O+ on the charge states of native proteins.JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2003Significance to determinations of stability constants of protein complexes Abstract The progressive reduction of charge in charge states of non-denatured proteins (lysozyme, ubiquitin, and cytochrome c), observed with nanospray in the positive ion mode, when the buffer salt ammonium acetate is replaced by ethylammonium acetates (EtNH3Ac, Et2NH2Ac and Et3NHAc) is rationalized on the basis of the charge residue model (CRM). The charge states of the multiply protonated protein are shown to be controlled by the increasing gas-phase basicities, GB(B), of the bases(B) NH3, EtNH2, Et2NH and Et3N. Charge states derived from evaluated apparent gas-phase basicities GBapp of the basic side-chains of the protein and the known GB(B) of the above bases are found to be in agreement with the experimentally observed charge states. This is a requirement of the CRM, because in this model the small positive ions (the buffer cations in the present case) at the surface of the electrospray droplets are the excess ions that provide the charge of the final small droplet that contains the protein molecule and on evaporation of the solvent transfer the charge to the protein. The observed charge states in the absence of buffer salts, i.e. pure water, are attributed to excess H3O+ ions produced by the electrolysis process that attends electrospray. A proposed extended mechanism provides predictions of factors that determine the sensitivity for detection of the multiply protonated proteins. Consideration of restraints imposed by the CRM lead to some simple predictions for conditions that should be present to obtain accurate determinations by electrospray and nanospray of stability constants for the protein,complex equilibrium in aqueous solution. Copyright © 2003 John Wiley & Sons, Ltd. [source] Separation of dyes using composite carbon membranesAICHE JOURNAL, Issue 7 2009Sonny Sachdeva Abstract A composite, clay supported carbon membrane has been synthesized by carbonization of a blend of polyethylene glycol and phenol formaldehyde resin and the membrane thus obtained is characterized by separation of dyes. This membrane is subjected to permeability test using pure water which is found to be considerably higher than that reported in literature. It is subsequently shown to reject Acid Orange 7 dye from water with the rejection dependent on pressure and concentration of the dye which is typical phenomenon observed for a charged membrane. The separation data has been analyzed using the Space charge model and the membrane charge is estimated by minimizing the root mean square error between the experimental results and those calculated from the model. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] |