Punch Test (punch + test)

Distribution by Scientific Domains


Selected Abstracts


Determination of Activation Volume in Nanocrystalline Cu Using the Shear Punch Test,

ADVANCED ENGINEERING MATERIALS, Issue 10 2007
K. Guduru
Stress relaxation test (SRT) is very useful to study the dislocation dynamics and thus the deformation behavior. It becomes quite difficult to use conventional testing methods when the material availability is limited. In such instances, miniaturized specimen testing procedures such as shear punch test (SPT) becomes significantly useful for studying the mechanical behavior of materials. Current research deals with a novel SRT method employed on nanocrystalline Cu using SPT to study the deformation mechanism. [source]


Determination of the Gurson,Tvergaard damage model parameters for simulating small punch tests

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 11 2010
I. I. CUESTA
ABSTRACT The objective of the final small punch test (SPT) is to determine the fracture properties of materials, such as fracture toughness, when not enough material is available for the conduct of conventional fracture tests. The damage model developed by Gurson, and subsequently modified by Tvergaard and Needleman (GTN), allows for the numerical simulation of the elastic-plastic behaviour until fracture. This model is based on several constitutive material parameters that must be calibrated if the model is to be properly applied. In this paper, we develop a consistent methodology for the identification of the GTN damage parameters based on the adjustment of the load-displacement curve obtained in the SPTs. The methodology presented is applicable to simulating other different SPTs with different thicknesses and test temperatures. Also, the three-dimensional modelling developed will be useful in the future for analysing the possible anisotropy exhibited by some materials. The next step in the simulation will be to determine its validity in other stress fields with different triaxiality ratios, like the one present in CT specimens, the ultimate goal being to allow for the estimation of the material fracture toughness. [source]


Predicting the J integral fracture toughness of Al 6061 using the small punch test

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 9 2007
E. BUDZAKOSKA
ABSTRACT The 6000 series aluminium alloys (Al,Mg,Si systems) are commonly used as medium-strength structural materials; in particular, the 6061 (Al,1Mg,0.6Si) alloy is widely utilized as a general-purpose structural material due to its excellent formability and corrosion-resisting capabilities. The objective of this study was to obtain a correlation between the small punch (SP) test estimated equivalent fracture strain (,qf) and fracture toughness (J1C) property for 6061 aluminium, and determine its viability as a non-destructive fracture toughness test technique for remaining life assessment of in-service components. Samples of 6061-T6 aluminium were cut from bulk plate, in both the longitudinal and transverse directions, for the as-received condition as well as subjected to three different over-ageing heat-treatment schedules. A strong linear correlation between valid J1C and SP estimated biaxial fracture strain ,qf is presented for aluminium 6061 at room temperature. [source]


Low-salt restructured fish products using microbial transglutaminase as binding agent

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 9 2002
Simón J Téllez-Luis
Abstract Low-salt restructured silver carp products were obtained using mechanically deboned fish meat from filleting wastes of silver carp (Hypophthalmichthys molitrix). The additives used were NaCl at three levels (0 (control), 10 and 20,g,kg,1) and microbial transglutaminase (MTGase) also at three levels (0 (control), 3 and 6,g,kg,1). The fish meat was massaged with the additives at <15,°C for 1,h. The massaged fish paste was then packed into steel stainless tubes and cooked at 40,°C for 30,min followed by 90,°C for 15,min. Changes in mechanical properties (texture profile analysis and punch test), solubility, electrophoretic profile and expressible water were evaluated. Hardness was in the range from 26.3 to 52.4,N, cohesiveness varied from 0.185 to 0.318 and springiness varied from 0.418 to 0.768. Increasing the amount of both additives improved the mechanical and functional properties of the restructured silver carp products. MTGase activity was associated with a decrease in protein solubility and a decrease in the myosin band (SDS-PAGE). Increasing NaCl decreased the amount of expressible water. The results indicated that it is feasible to obtain low-salt restructured silver carp products with improved mechanical and good functional properties using 3,g,kg,1 MTGase and 10,g,kg,1 NaCl. © 2002 Society of Chemical Industry [source]


Determination of the Gurson,Tvergaard damage model parameters for simulating small punch tests

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 11 2010
I. I. CUESTA
ABSTRACT The objective of the final small punch test (SPT) is to determine the fracture properties of materials, such as fracture toughness, when not enough material is available for the conduct of conventional fracture tests. The damage model developed by Gurson, and subsequently modified by Tvergaard and Needleman (GTN), allows for the numerical simulation of the elastic-plastic behaviour until fracture. This model is based on several constitutive material parameters that must be calibrated if the model is to be properly applied. In this paper, we develop a consistent methodology for the identification of the GTN damage parameters based on the adjustment of the load-displacement curve obtained in the SPTs. The methodology presented is applicable to simulating other different SPTs with different thicknesses and test temperatures. Also, the three-dimensional modelling developed will be useful in the future for analysing the possible anisotropy exhibited by some materials. The next step in the simulation will be to determine its validity in other stress fields with different triaxiality ratios, like the one present in CT specimens, the ultimate goal being to allow for the estimation of the material fracture toughness. [source]


Inverse determination of the elastoplastic and damage parameters on small punch tests

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 11 2009
I. PEÑUELAS
ABSTRACT The small punch test (SPT) is very useful in those situations where it is necessary to use small volumes of material. The aim of this paper is to create and validate a methodology for the determination of the mechanical and damage properties of steels from the load-displacement curve obtained by means of SPTs. This methodology is based on the inverse method, the design of experiments, the polynomial curve adjustment and the evolutionary multi-objective optimization, and also allows simulating the SPTs. In order to validate the proposed methodology, the numerical results have been compared with experimental results obtained by means of normalized tests. Two dimensional axisymmetric and three-dimensional simulations have been performed in order to allow the analysis of isotropic and anisotropic materials, respectively. [source]