Pumping System (pumping + system)

Distribution by Scientific Domains


Selected Abstracts


A New Depth-Discrete Multilevel Monitoring Approach for Fractured Rock

GROUND WATER MONITORING & REMEDIATION, Issue 2 2007
John A. Cherry
A new approach for monitoring in fractured rock was demonstrated in a contaminated (trichloroethylene and metolachlor) dolostone aquifer used for municipal water supply. The system consists of two related technologies: a continuous packer for temporary borehole seals (Flexible Liner Underground Technologies Ltd. [FLUTe] blank liner) and a depth-discrete multilevel monitoring system (MLS) (the Water FLUTe) for temporary or permanent monitoring. The continuous borehole liner consists of a urethane-coated nylon fabric tube custom sized to each hole. The FLUTe MLS consists of the same liner material with many depth-discrete intervals for monitoring hydraulic head and/or ground water quality. The FLUTe blank liner seals the entire borehole, prior to FLUTe multilevel installation, to prevent vertical cross connection while allowing borehole logging and testing. The FLUTe multilevel system also seals the entire borehole with the exception of each monitoring interval where the formation water has direct hydraulic connection to the pumping system via a thin permeable mesh sandwiched between the liner and the formation. The blank sealing liners and the multilevel systems were used in five boreholes ranging in diameter between 9.6 and 14.5 cm in the dolostone aquifer to depths of 150 m. The systems were custom designed for each borehole and included between 12 and 15 monitoring intervals. The application demonstrated the ease of installation and removability and facilitated obtaining large data sets with minimal labor. The system offers unique and versatile design features not possible with other bedrock monitoring devices and has been used at many bedrock contamination sites across North America. [source]


Optimum matching parameters of an MPPT unit used for a PVG-powered water pumping system for maximum power transfer

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 6 2006
Mehmet Akbaba
Abstract Photovoltaic generator (PVG)-powered water pumping has the potential to bring potable water to millions of people in developing countries. However, due to the high initial cost of PVG units, sophisticated load matching is required between the water pumping system and PVG, in order to be able to extract maximum available power from an available PVG unit at all solar radiation levels. This requires an intermediate circuitry between the PVG unit and the motor driving the water pump, which is usually termed as maximum power point trackers (MPPT). This present paper therefore investigates the optimum matching parameters of a power conditioning circuit, which is composed of a double step-up dc,dc converter (DSUC). This MPTT circuit is used for interfacing a permanent magnet (PM) motor-driven water pumping system to a PVG for extracting maximum available power from PVG, hence maximizing the energy utilization efficiency and price,performance ratio of the whole system. It is shown that two key parameters of the DSUC, which are the duty cycle and chopping frequency, are dominating the performance of the whole system, and they are interrelated and load dependent. Therefore, optimum values of these parameters need to be determined. An example system is provided in which a complete modelling is presented in time domain and through numerical experiments it is demonstrated how the optimum values of these two key matching parameters can be determined for a given system. The MPPT circuit used in this investigation is suitable for optimum matching of all types of loads to PVG units, provided that an optimum frequency,duty cycle pair is determined for the choppers in DSUC for every 5% bands of solar radiation between 20 and 100%. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Application of local and global particle swarm optimization algorithms to optimal design and operation of irrigation pumping systems,

IRRIGATION AND DRAINAGE, Issue 3 2009
M. H. Afshar
stations de pompage; conception et exploitation; optimisation par essaims particulaires locale et globale Abstract A particle swarm optimization (PSO) algorithm is used in this paper for optimal design and operation of irrigation pumping systems. An irrigation pumping systems design and management model is first introduced and subsequently solved with the newly introduced PSO algorithm. The solution of the model is carried out in two steps. In the first step an exhaustive enumeration is carried out to find all feasible sets of pump combinations able to cope with a given demand curve over the required period. The PSO algorithm is then called in to search for optimal operation of each set. Having solved the operation problem of all feasible sets, the total cost of operation and depreciation of initial investment is calculated for all the sets and the optimal set and the corresponding optimal operating policy is determined. The proposed model is applied to the design and operation of a real-world irrigation pumping system and the results are presented and compared with those of a genetic algorithm. Two global and local versions of the PSO algorithm are used and their efficiencies are compared to each other and that of a genetic algorithm (GA) model. The results indicate that the proposed model in conjunction with the PSO algorithm is a versatile management model for the design and operation of real-world irrigation pumping systems. Copyright © 2008 John Wiley & Sons, Ltd. Un algorithme d'optimisation par essaims particulaires (PSO en anglais) est employé dans cet article pour la conception et l'exploitation optimale des systèmes d'irrigation avec pompages. Un modèle de conception et de gestion du système est d'abord présenté et ensuite résolu avec le nouvel algorithme PSO. La solution du modèle est effectuée dans deux étapes. Dans la première étape une énumération exhaustive est effectuée pour trouver toutes les combinaisons possibles de pompes capables de répondre à une courbe de demande donnée pendant la période souhaitée. L'algorithme d'optimisation par essaims particulaires est alors utilisé pour rechercher la gestion optimale de chaque ensemble. Ayant résolu le problème de gestion de toutes les combinaisons possibles, le coût d'exploitation et d'amortissement de l'investissement initial est calculé pour chacune et la combinaison optimale et sa stratégie de gestion optimale est déterminée. Le modèle proposé est appliqué à la conception et l'exploitation d'un système irrigué réel et les résultats sont présentés et comparés à ceux d'un algorithme génétique. Deux versions globales et locales de l'algorithme PSO sont employées et leurs efficacités sont comparées entre eux et avec celles d'un modèle à algorithme génétique. Les résultats indiquent que le modèle proposé associé à l'algorithme d'optimisation par essaims particulaires est un modèle souple pour la conception et l'exploitation systèmes irrigués réels avec pompage. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A COMPUTERIZED SYSTEM FOR CONTROLLING AND MEASURING GUSTATORY REACTION TIMES

JOURNAL OF SENSORY STUDIES, Issue 4 2000
MIGUELINA GUIRAO
ABSTRACT Reaction Time (RT) procedures are widely used in cognitive and behavioral experiments. In the sensory realm RT has been traditionally applied to measure visual, auditory or motor responses. The application of the RT method to gustatory stimuli has proved to be difficult. Attempts to develop automatic control techniques have been restrained by difficulties related to the control of variables, e.g. physiochemical characteristics of chemical solutions and the procedure for stimulus presentation. In this report we describe a computer based system that was designed to measure the reaction time to taste solutions dropped on the tongue. The equipment consists of a pumping system, an interface between the computer and the pumping system, the software required to control the interface and to measure reaction time, and a push button to detect the subject's response. The system can be used as a tool for both research and evaluation tests. [source]


Development of a differential pumping system for soft X-ray beamlines for windowless experiments under normal atmospheric conditions

JOURNAL OF SYNCHROTRON RADIATION, Issue 2 2010
Y. Tamenori
A novel design for a differential pumping system has been investigated. This system allows windowless experiments in a soft X-ray beamline under normal atmospheric conditions. The new design consists of an aperture-based four-stage differential pumping system, based on a simple model calculation. A prototype system with a total length of 600,mm was constructed to confirm the validity of the design concept. Relatively short conductance-limiting components allow easy installation and alignment of the system on a synchrotron beamline. The fabricated system was installed on a beamline to test the transmission of soft X-rays through atmospheric helium. [source]


A novel on-line solid-phase extraction approach integrated with a monolithic column and tandem mass spectrometry for direct plasma analysis of multiple drugs and metabolites

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2005
Xu Zang
An on-line solid-phase extraction liquid chromatography/tandem mass spectrometry (SPE LC/MS/MS) assay using a newly developed SPE column and a monolithic column was developed and validated for direct analysis of plasma samples containing multiple analytes. This assay was developed in an effort to increase bioanalysis throughput and reduce the complexity of on-line SPE LC/MS/MS systems. A simple column-switching configuration that requires only one six-port valve and one HPLC pumping system was employed for on-line plasma sample preparation and subsequent gradient chromatographic separation. The resulting analytical method couples the desired sensitivity with ease of use. The method was found to perform satisfactorily for direct plasma analysis with respect to assay linearity, specificity, sensitivity, precision, accuracy, carryover, and short-term stability of an eight-analyte mixture in plasma. A gradient LC condition was applied to separate the eight analytes that cannot be distinctly differentiated by MS/MS. With a run time for every injection of 2.8,min, a minimum of 300 direct plasma injections were made on one on-line SPE column without noticeable changes in system performance. Due to the ruggedness and simplicity of this system, generic methods can be easily developed and applied to analyze a wide variety of compounds in a high-throughput manner without laborious off-line sample preparation. Copyright © 2005 John Wiley & Sons, Ltd. [source]


A New Pulsatile Volumetric Device With Biomorphic Valves for the In Vitro Study of the Cardiovascular System

ARTIFICIAL ORGANS, Issue 12 2009
Ettore Lanzarone
Abstract A pulsatile mock loop system was designed and tested. This prototype represents a versatile, adjustable, and controllable experimental apparatus for in vitro studies of devices meant to interface with the human circulatory system. The pumping system consisted of a ventricular chamber featuring two biomorphic silicone valves as the inlet and outlet valves. The chamber volume is forced by a piston pump moved by a computer-controlled, low-inertia motor. Fluid dynamic tests with the device were performed to simulate physiological conditions in terms of cardiac output (mean flow of 5 and 6 L/min, with beat rates from 60 to 80 bpm), of rheological properties of the processed fluid, and of systemic circulation impedance. The pulsating actuator performed a good replication of the physiological ventricular behavior and was able to guarantee easy control of the waveform parameters. Experimental pressure and flow tracings reliably simulated the physiological profiles, and no hemolytic subatmospheric pressures were revealed. The performance of the prototype valves was also studied in terms of dynamic and static backflow, effective orifice area, and pressure loss, resulting in their applicability for this device. Mechanical reliability was also tested over 8 h. The device proved to be a reliable lab apparatus for in vitro tests; the pumping system also represents a first step toward a possible future application of pulsating perfusion in the clinic arena, such as in short-term cardiac assist and pulsatile cardiopulmonary bypass. [source]


Application of local and global particle swarm optimization algorithms to optimal design and operation of irrigation pumping systems,

IRRIGATION AND DRAINAGE, Issue 3 2009
M. H. Afshar
stations de pompage; conception et exploitation; optimisation par essaims particulaires locale et globale Abstract A particle swarm optimization (PSO) algorithm is used in this paper for optimal design and operation of irrigation pumping systems. An irrigation pumping systems design and management model is first introduced and subsequently solved with the newly introduced PSO algorithm. The solution of the model is carried out in two steps. In the first step an exhaustive enumeration is carried out to find all feasible sets of pump combinations able to cope with a given demand curve over the required period. The PSO algorithm is then called in to search for optimal operation of each set. Having solved the operation problem of all feasible sets, the total cost of operation and depreciation of initial investment is calculated for all the sets and the optimal set and the corresponding optimal operating policy is determined. The proposed model is applied to the design and operation of a real-world irrigation pumping system and the results are presented and compared with those of a genetic algorithm. Two global and local versions of the PSO algorithm are used and their efficiencies are compared to each other and that of a genetic algorithm (GA) model. The results indicate that the proposed model in conjunction with the PSO algorithm is a versatile management model for the design and operation of real-world irrigation pumping systems. Copyright © 2008 John Wiley & Sons, Ltd. Un algorithme d'optimisation par essaims particulaires (PSO en anglais) est employé dans cet article pour la conception et l'exploitation optimale des systèmes d'irrigation avec pompages. Un modèle de conception et de gestion du système est d'abord présenté et ensuite résolu avec le nouvel algorithme PSO. La solution du modèle est effectuée dans deux étapes. Dans la première étape une énumération exhaustive est effectuée pour trouver toutes les combinaisons possibles de pompes capables de répondre à une courbe de demande donnée pendant la période souhaitée. L'algorithme d'optimisation par essaims particulaires est alors utilisé pour rechercher la gestion optimale de chaque ensemble. Ayant résolu le problème de gestion de toutes les combinaisons possibles, le coût d'exploitation et d'amortissement de l'investissement initial est calculé pour chacune et la combinaison optimale et sa stratégie de gestion optimale est déterminée. Le modèle proposé est appliqué à la conception et l'exploitation d'un système irrigué réel et les résultats sont présentés et comparés à ceux d'un algorithme génétique. Deux versions globales et locales de l'algorithme PSO sont employées et leurs efficacités sont comparées entre eux et avec celles d'un modèle à algorithme génétique. Les résultats indiquent que le modèle proposé associé à l'algorithme d'optimisation par essaims particulaires est un modèle souple pour la conception et l'exploitation systèmes irrigués réels avec pompage. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Multimodal Flow Visualization and Optimization of Pneumatic Blood Pump for Sorbent Hemodialysis System

ARTIFICIAL ORGANS, Issue 4 2009
Fangjun Shu
Abstract:, Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection. [source]