Pump Flow (pump + flow)

Distribution by Scientific Domains

Terms modified by Pump Flow

  • pump flow rate

  • Selected Abstracts


    The Role of Diastolic Pump Flow in Centrifugal Blood Pump Hemodynamics

    ARTIFICIAL ORGANS, Issue 9 2001
    Takehide Akimoto
    Abstract: We tried to verify the hypothesis that increases in pump flow during diastole are matched by decreases in left ventricular (LV) output during systole. A calf (80 kg) was implanted with an implantable centrifugal blood pump (EVAHEART, SunMedical Technology Research Corp., Nagano, Japan) with left ventricle to aorta (LV-Ao) bypass, and parameters were recorded at different pump speeds under general anesthesia. Pump inflow and outflow pressure, arterial pressure, systemic and pulmonary blood flow, and electrocardiogram (ECG) were recorded on the computer every 5 ms. All parameters were separated into systolic and diastolic components and analyzed. The pulmonary flow was the same as the systemic flow during the study (p > 0.1). Systemic flow consisted of pump flow and LV output through the aortic valve. The ratio of systolic pump flow to pulmonary flow (51.3%) did not change significantly at variable pump speeds (p > 0.1). The other portions of the systemic flow were shared by the left ventricular output and the pump flow during diastole. When pump flow increased during diastole, there was a corresponding decrease in the LV output (Y = ,1.068X+ 51.462; R,2 = 0.9501). These show that pump diastolic flow may regulate expansion of the left ventricle in diastole. [source]


    Effects of Left Ventricular Assist Device on Cardiac Function: Experimental Study of Relationship between Pump Flow and Left Ventricular Diastolic Function

    ARTIFICIAL ORGANS, Issue 9 2001
    Akira Saito
    Abstract: The left ventricular assist device (LVAD) with centrifugal pump has two characteristics. One is a pump flow wave of the centrifugal pump, consisting of the pulsatile flow of the native heart and the nonpulsatile flow of the centrifugal pump. The other is that the centrifugal pump fills from the native heart not only in the systolic phase, but also in the diastolic phase. In the case of the apex outlet LVAD with centrifugal pump, blood flows from the left atrium through the left ventricle to the pump. Pump flow is regulated by preload, and preload is regulated by diastolic hemodynamics. The aim of this study is to analyze the relationship between pump flow and the diastolic hemodynamics of the native heart. Ten anesthetized intact pigs were studied after placement of an LVAD. Data were recorded with the LVAD off (control) and the LVAD on. The assist rate was changed to 25%, 50%, and 75%. The indexes of left ventricular (LV) diastolic function included LV myocardial relaxation (time constant of isovolumic pressure decay [Tau] and maximum negative dP/dt[LV dP/dt min]) and LV filling (peak filling rate [PFR], time to peak filling rate [tPFR], and diastolic filling time [DFT]). Stroke volume decreased significantly in 75% assist. LV end-systolic pressure decreased significantly in 50% and 75% assist. LV end-diastolic volume decreased as assist rate increased, but there were no significant changes. Stroke work decreased significantly in 50% and 75% assist. LV dP/dt min decreased significantly in 50% and 75% assist. Tau prolonged as assist rate increased, but there were no significant changes. DFT shortened significantly in 75% assist. PFR increased significantly in 75% assist. tPFR shortened significantly in 50% and 75% assist. In this study, LV relaxation delayed as an increasing of pump assist rate, but it suggested a result of reduction of cardiac work. Also, it was suggested that LVAD increases the pressure difference between the left atrium and the left ventricle in the diastolic phase. This phenomenon is due to the filling of the left ventricle. In this study it was suggested that as pump assist rate increases, it is more effective to keep cardiac function in the diastolic phase. [source]


    Spontaneous Echocardiographic Contrast in the Ascending Aorta Mimicking the Appearance of Aortic Dissection in a Patient with a Left Ventricular Assist Device

    ECHOCARDIOGRAPHY, Issue 2 2004
    Dermot G. Nicolson M.B.B.Ch.
    We describe a patient with a previously implanted Jarvik 2000 left ventricular assist device (LVAD), who presented with bacteraemia and with features suspected for aortic dissection at the CT scan. However, transesophageal echocardiography showed competition in the ascending aorta between the retrograde pump flow and the anterograde transaortic output, which mimicked true aortic dissection and could be resolved by lowering the pump speed. As patients with LVAD are increasing in number, clinicians should be aware of this possible effect. (ECHOCARDIOGRAPHY, Volume 21, February 2004) [source]


    Regional Variations of Contractile Activity in Isolated Rat Lymphatics

    MICROCIRCULATION, Issue 6 2004
    ANATOLIY A. GASHEV
    ABSTRACT Objective: To evaluate lymphatic contractile activity in different regions of the lymphatic system in a single animal model (the rat thoracic duct, mesenteric, cervical, and femoral lymphatics) in response to changes in lymph pressure and flow. Methods: The systolic and diastolic diameters of isolated, cannulated, and pressurized lymphatic vessels were measured. Contraction frequency, ejection fraction, and fractional pump flow were determined. The influences of incrementally increased transmural pressure (from 1 to 9 cm H2O) and imposed flow (from 1 to 5 cm H2O transaxial pressure gradient) were investigated. Results: The authors determined regional differences in lymphatic contractility in response to pressure and imposed flow. They found the highest pumping (at the optimal pressure levels) in mesenteric lymphatics and lowest pumping in thoracic duct. All lymphatics had their optimal pumping conditions at low levels of transmural pressure. Different degrees of the flow-induced inhibition of the pump were observed in the different types of lymphatics. During high flow, the active lymph pumps in thoracic duct and cervical lymphatics were almost completely abolished, whereas mesenteric and femoral lymphatics still exhibited significant active pumping. Conclusions: The active lymph pumps in different regions of the rat body express variable relative strengths and sensitivities that are predetermined by different hydrodynamic factors and regional outflow resistances in their respective locations. [source]


    The Meaning of the Turning Point of the Index of Motor Current Amplitude Curve in Controlling a Continuous Flow Pump or Evaluation of Left Ventricular Function

    ARTIFICIAL ORGANS, Issue 3 2003
    G.J. Endo
    It is the goal of this section to publish material that provides information regarding specific issues, aspects of artificial organ application, approach, philosophy, suggestions, and/or thoughts for the future Abstract: In this series, we investigated the meaning of the t-point of index of motor current amplitude (ICA) curve from a point of view of flow rate on in vitro and in vivo studies. On mock circulation loop and left ventricular assist device (LVAD),equipped pigs, we detected the t-point and compared the pump flow at the t-point with the simultaneous cardiac output. The pump flow at the t-point showed high correlation against the simultaneous cardiac output for in vitro or in vivo study. By detection of the t-point of the ICA curve and measuring or estimating the pump flow at t-point, the cardiac output may be assessed without any sensor in various cardiac conditions. [source]


    Development of the Baylor Gyro Permanently Implantable Centrifugal Blood Pump as a Biventricular Assist Device

    ARTIFICIAL ORGANS, Issue 9 2001
    Kenji Nonaka
    Abstract: The Baylor Gyro permanently implantable centrifugal blood pump (Gyro PI pump) has been under development since 1995 at Baylor College of Medicine. Excellent results were achieved as a left ventricular assist device (LVAD) with survival up to 284 days. Based on these results, we are now focusing on the development of a biventricular assist device (BVAD) system, which requires 2 pumps to be implanted simultaneously in the preperitoneal space. Our hypothesis was that the Gyro PI pump would be an appropriate device for an implantable BVAD system. The Gyro PI 700 pump is fabricated from titanium alloy and has a 25 ml priming volume, pump weight of 204 g, height of 45 mm, and pump diameter of 65 mm. This pump can provide 5 L/min against 100 mm Hg at 2,000 rpm. In this study, 6 half-Dexter healthy calves have been used as the experimental model. The right pump was applied between the infundibular of the right ventricle and the main pulmonary artery. The left pump was applied between the apex of the left ventricle and the thoracic descending aorta. As for anticoagulation, heparin was administered at the first postoperative week and then converted to warfarin sodium from the second week after surgery. Both pump flow rates were controlled maintaining a pulmonary arterial flow of less than 160 ml/kg/min for the sake of avoidance of pulmonary congestion. Blood sampling was done to assess visceral organ function, and the data regarding pump performance were collected. After encountering the endpoint, which the study could not keep for any reasons, necropsy and histopathological examinations were performed. The first 2 cases were terminated within 1 week. Deterioration of the pump flow due to suction phenomenon was recognized in both cases. To avoid the suction phenomenon, a flexible conduit attached on the inlet conduit was designed and implanted. After using the flexible inflow conduit, the required power and the rotational speed were reduced. Furthermore, the suction phenomenon was not observed except for 1 case. There was no deterioration regarding visceral organ function, and pulmonary function was maintained within normal range except for 1 case. Even though the experimental animal survived up to 45 days with the flexible inflow conduit, an increase in power consumption due to thrombus formation behind the impeller became a problem. Lower rotational speed, which was probably produced by the effectiveness of the flexible inflow conduit, was speculated to be one of the reasons. And the minimum range of rotational speed was 1,950 rpm in these 6 BVAD cases and the previous 3 cases of LVAD. In conclusion, 6 cases of BVAD implantation were performed as in vivo animal studies and were observed up to 45 days. The flexible inflow conduit was applied in 4 of 6 cases, and it was effective in avoiding a suction phenomenon. The proper rotational speed of the Gyro PI 700 pump was detected from the viewpoint of antithrombogenicity, which is more than 1,950 rpm. [source]


    The Role of Diastolic Pump Flow in Centrifugal Blood Pump Hemodynamics

    ARTIFICIAL ORGANS, Issue 9 2001
    Takehide Akimoto
    Abstract: We tried to verify the hypothesis that increases in pump flow during diastole are matched by decreases in left ventricular (LV) output during systole. A calf (80 kg) was implanted with an implantable centrifugal blood pump (EVAHEART, SunMedical Technology Research Corp., Nagano, Japan) with left ventricle to aorta (LV-Ao) bypass, and parameters were recorded at different pump speeds under general anesthesia. Pump inflow and outflow pressure, arterial pressure, systemic and pulmonary blood flow, and electrocardiogram (ECG) were recorded on the computer every 5 ms. All parameters were separated into systolic and diastolic components and analyzed. The pulmonary flow was the same as the systemic flow during the study (p > 0.1). Systemic flow consisted of pump flow and LV output through the aortic valve. The ratio of systolic pump flow to pulmonary flow (51.3%) did not change significantly at variable pump speeds (p > 0.1). The other portions of the systemic flow were shared by the left ventricular output and the pump flow during diastole. When pump flow increased during diastole, there was a corresponding decrease in the LV output (Y = ,1.068X+ 51.462; R,2 = 0.9501). These show that pump diastolic flow may regulate expansion of the left ventricle in diastole. [source]


    Effects of Left Ventricular Assist Device on Cardiac Function: Experimental Study of Relationship between Pump Flow and Left Ventricular Diastolic Function

    ARTIFICIAL ORGANS, Issue 9 2001
    Akira Saito
    Abstract: The left ventricular assist device (LVAD) with centrifugal pump has two characteristics. One is a pump flow wave of the centrifugal pump, consisting of the pulsatile flow of the native heart and the nonpulsatile flow of the centrifugal pump. The other is that the centrifugal pump fills from the native heart not only in the systolic phase, but also in the diastolic phase. In the case of the apex outlet LVAD with centrifugal pump, blood flows from the left atrium through the left ventricle to the pump. Pump flow is regulated by preload, and preload is regulated by diastolic hemodynamics. The aim of this study is to analyze the relationship between pump flow and the diastolic hemodynamics of the native heart. Ten anesthetized intact pigs were studied after placement of an LVAD. Data were recorded with the LVAD off (control) and the LVAD on. The assist rate was changed to 25%, 50%, and 75%. The indexes of left ventricular (LV) diastolic function included LV myocardial relaxation (time constant of isovolumic pressure decay [Tau] and maximum negative dP/dt[LV dP/dt min]) and LV filling (peak filling rate [PFR], time to peak filling rate [tPFR], and diastolic filling time [DFT]). Stroke volume decreased significantly in 75% assist. LV end-systolic pressure decreased significantly in 50% and 75% assist. LV end-diastolic volume decreased as assist rate increased, but there were no significant changes. Stroke work decreased significantly in 50% and 75% assist. LV dP/dt min decreased significantly in 50% and 75% assist. Tau prolonged as assist rate increased, but there were no significant changes. DFT shortened significantly in 75% assist. PFR increased significantly in 75% assist. tPFR shortened significantly in 50% and 75% assist. In this study, LV relaxation delayed as an increasing of pump assist rate, but it suggested a result of reduction of cardiac work. Also, it was suggested that LVAD increases the pressure difference between the left atrium and the left ventricle in the diastolic phase. This phenomenon is due to the filling of the left ventricle. In this study it was suggested that as pump assist rate increases, it is more effective to keep cardiac function in the diastolic phase. [source]


    Implantation of One Piece Biventricular Assist Device by Left Thoracotomy in an Ovine Model

    ARTIFICIAL ORGANS, Issue 9 2000
    Won Gon Kim
    Abstract: In this report, we describe an operative procedure for our implantable 1 piece biventricular assist device (BiVAD) based on a moving actuator mechanism, using an ovine model. Our implantable BiVAD is a volumetric coupled 1 piece unit including right and left blood sacs and an actuator assembly based on the moving actuator mechanism. The BiVAD was controlled by fixed rate control with 75 bpm for the most part. Both the left and the right full ejection modes with the maximum stroke angle were selected to minimize blood stasis in the blood sacs because of low assist flow condition. Three Corriedale sheep were used for the device implantation by a left thoracotomy incision. Cannulation was successfully performed in all cases. Although exposability of the right atrial appendage varied from animal to animal, the insertion of the cannula was easily performed. The cannulas were connected to the pump-actuator assembly in the preperitoneal pocket. All 3 animals survived the experimental procedure. During implantation of the device, in the 1 month survival animal, pump flow was maintained between 2.0 L/min and 2.5 L/min, mean aortic pressure was 90,110 mm Hg, and mean pulmonary artery pressure was 20,30 mm Hg. The left and right atrial pressure were maintained between 0 and 5 mm Hg. In conclusion, this ovine model for implantation of the 1 piece BiVAD can be an effective alternative for testing in vivo biocompatibility of the device although it needs more consideration for anatomical fittability for future human application. [source]


    Physical Model-Based Indirect Measurements of Blood Pressure and Flow Using a Centrifugal Pump

    ARTIFICIAL ORGANS, Issue 8 2000
    Tadashi Kitamura
    Abstract: This article describes a technique offering indirect measurements of pump pressure differential and flow with certain accuracy independent of changes in blood viscosity. This technique is based on noninvasive measurements of the motor current and rotation speed using the physical model equations of the centrifugal pump system. Blood viscosity included in the coefficients of the dynamic equations is first estimated, and then substitution of the estimated viscosity into the steady equations of the model provides pump flow and pressure differential. In vitro tests using a Capiox pump showed a sufficient linear correlation between actual values and their estimates for pressure differential and pump flow. An in vivo test using a 45 kg sheep showed that the proposed algorithm needs robustness for the convergence of estimates of viscosity. An overall evaluation, however, of the developed algorithm/model showed indications of success in terms of efficient computation and modeling. [source]


    Estimation of Pump Flow Rate and Abnormal Condition of Implantable Rotary Blood Pumps During Long-Term In Vivo Study

    ARTIFICIAL ORGANS, Issue 4 2000
    K. Nakata
    Abstract: The control system for an implantable rotary blood pump is not clearly defined. A detection system is considered to be necessary for pump flow monitoring and abnormal conditions such as back flow or a sucking phenomenon where the septum or left ventricle wall is sucked into the cannula, etc. The ultrasound flowmeter is durable and reliable but the control system should not be totally dependent on the flowmeter. If the flowmeter breaks, the rotary blood pumps have no control mechanism. Therefore, the authors suggest controlling the pumps by an intrinsic parameter. One left ventricular assist device (LVAD) calf model was studied where the flow rate and waveform of the pump flow proved to identify the sucking phenomenon. Thus, the pump flow rate was calculated from the required power, motor speed, and heart rate. The value of the coefficient of determination (R2) between the measured and estimated pump flow rate was 0.796. To estimate this abnormal phenomenon, 2 methods were evaluated. One method was the total pressure head in which the pump flow rate and motor speed were estimated. During normal conditions the total pressure head is 79.5 ± 7.0 mm Hg whereas in the abnormal condition, it is 180.0 ± 2.8 mm Hg. There was a statistical difference (p < 0.01). Another method is using a current waveform. There is an association between the current and pump flow waves. The current was differentiated and squared to calculate the power of the differentiated current. The normal range of this value was 0.025 ± 0.029; the abnormal condition was 11.25 ± 15.13. There was a statistical difference (p < 0.01). The predicted flow estimation method and a sucking detection method were available from intrinsic parameters of the pump and need no sensors. These 2 methods are simple, yet effective and reliable control methods for a rotary blood pump. [source]