Pullout Tests (pullout + test)

Distribution by Scientific Domains


Selected Abstracts


Innovation zur Bestimmung der Erdstoff-Geokunststoff-Wechselwirkung , Pullout-, Scher- und Reibungsversuche

BAUTECHNIK, Issue 9 2004
Taner Aydogmus Dipl.-Ing.
Der Einsatz des ökonomischen und ökologischen Baumaterials "Geokunststoff" hat sich in den letzten Jahren in der Geotechnik für das Bauwesen, den Bergbau und den Umweltschutz stark verbreitet. In Form von Geotextilien, Geogittern, Geomembranen und verwandten Produkten ermöglichen sie technisch einfache, preisgünstige alternative Lösungsmöglichkeiten. Für die Berechnung der Standsicherheit von Konstruktionen mit Geokunststoffen, die für Bewehrungszwecke verwendet werden, ist die Ermittlung der "Reibungseigenschaften" in den Schichtgrenzen zwischen verschiedenen Geokunststoffen sowie zwischen Geokunststoffen und Erdstoffen unerläßlich. Zur Einschätzung der Hauptversagensmechanismen eines kunststoffbewehrten Erdkörpers werden üblicherweise Scher- und Reibungsversuche sowie nun auch verstärkt Pullout-Versuche durchgeführt. In diesem Beitrag wird ein neu entwickeltes und gebautes vollautomatisches Großrahmenschergerät mit integrierter Herausziehversuchseinrichtung vorgestellt, welches die Durchführung von vielfältigen innovativen Versuchen, mit leicht reproduzierbaren , den in-situ-Verhältnissen anpaßbaren , Randbedingungen, dem aktuellen Stand der Versuchstechnik entsprechend und nach den Vorgaben der neuen Normen (z. B. DIN 18137-3) ermöglicht. Innovation for the determination of the soil-geosynthetic interaction , pullout-, shear- and friction tests. The use of the economical and ecological construction material "geosynthetic" plays a rapidly increasing role in a variety of civil engineering, mining and environmental protection applications. Geosynthetics captured their own place as construction material due to their diversity and their specific characteristics. The applications of geosynthetics are many-sided. In the form of geotextiles, geogrids, geomembranes and related products, they make technically simple and low-priced alternative solution concepts possible. For the stability analysis of geosynthetic constructions knowledge of the friction behaviour in the geosynthetic interfaces is essential. For the assessment of the main failure mechanisms of a geosynthetic reinforced construction shear- and friction tests are usually performed as well as now also Pullout tests. In the following, a novel experimental apparatus for the examination of the interaction behaviour of soil-geosynthetic compound systems capable of performing both pullout and direct shear tests is described. In comparison with known geosynthetic testing practice, the novel testing apparatus offers the special advantage that a wide range of innovative shear and pullout test procedures can be carried out in the same device with negligible influence of test device configurations on friction test results. [source]


Mechanical properties of injection molded long fiber polypropylene composites, Part 1: Tensile and flexural properties

POLYMER COMPOSITES, Issue 2 2007
K. Senthil Kumar
Innovative polymers and composites are broadening the range of applications and commercial production of thermoplastics. Long fiber-reinforced thermoplastics have received much attention due to their processability by conventional technologies. This study describes the development of long fiber reinforced polypropylene (LFPP) composites and the effect of fiber length and compatibilizer content on their mechanical properties. LFPP pellets of different sizes were prepared by extrusion process using a specially designed radial impregnation die and these pellets were injection molded to develop LFPP composites. Maleic-anhydride grafted polypropylene (MA- g -PP) was chosen as a compatibilizer and its content was optimized by determining the interfacial properties through fiber pullout test. Critical fiber length was calculated using interfacial shear strength. Fiber length distributions were analyzed using profile projector and image analyzer software system. Fiber aspect ratio of more than 100 was achieved after injection molding. The results of the tensile and flexural properties of injection molded long glass fiber reinforced polypropylene with a glass fiber volume fraction of 0.18 are presented. It was found that the differences in pellet sizes improve the mechanical properties by 3,8%. Efforts are made to theoretically predict the tensile strength and modulus using the Kelly-Tyson and Halpin-Tsai model, respectively. POLYM. COMPOS., 28:259,266, 2007. © 2007 Society of Plastic Engineers [source]


Material stiffness, branching pattern and soil matric potential affect the pullout resistance of model root systems

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 6 2007
S. B. Mickovski
Summary Understanding of the detailed mechanisms of how roots anchor in and reinforce soil is complicated by the variability and complexity of both materials. This study controlled material stiffness and architecture of root analogues, by using rubber and wood, and also employed real willow root segments, to investigate the effect on pullout resistance in wet and air-dry sand. The architecture of model roots included either no laterals (tap-root) or a single pair at two different locations (herringbone and dichotomous). During pullout tests, data on load and displacement were recorded. These studies were combined with Particle Image Velocimetry (PIV) image analysis of the model root-soil system at a transparent interface during pullout to increase understanding of mechanical interactions along the root. Model rubber roots with small stiffness had increasing pullout resistance as the branching and the depth of the lateral roots increased. Similarly, with the stiff wooden root models, the models with lateral roots embedded deeper showed greatest resistance. PIV showed that rubber model roots mobilized their interface shear strength progressively whilst rigid roots mobilized it equally and more rapidly over the whole root length. Soil water suction increased the pullout resistance of the roots by increasing the effective stress and soil strength. Separate pullout tests conducted on willow root samples embedded in sand showed similar behaviour to the rigid model roots. These tests also demonstrated the effect of the root curvature and rough interface on the maximum pullout resistance. [source]


Monotonic and cyclic modeling of interface between geotextile and gravelly soil

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2010
Ga Zhang
Abstract This paper describes a modified elasto-plasticity damage model to capture monotonic and cyclic behavior of the interface between a geotextile and gravelly soil. New damage variable and shear strength criterion are introduced on the basis of test observations. The formulations of the modified model are obtained by extending those of the original interface model. The model parameters with physical meaning are easily determined from a group of cyclic shear tests and a confining compression test. The model predictions are compared with the results of a series of direct shear tests and large-scale pullout tests. The comparison results demonstrate that the model accurately describes the monotonic and cyclic stress,strain relationship of the interface between a geotextile and gravelly soil while capturing new characteristics: (1) the strength that is nonlinearly dependent on the normal stress; (2) significant shear strain-softening; (3) the comprehensive volumetric strain response with dependency on the shear direction; and (4) the evolution of behavior associated with the changes in the physical state that includes the geotextile damage. This model is used in a finite element analysis of pullout tests, indicating that the tensile modulus of a geotextile has a significant effect on the response of the geotextile,gravel system. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Auswirkungen der Matrixzusammensetzung auf die Dauerhaftigkeit von Betonen mit textilen Bewehrungen aus AR-Glas

BETON- UND STAHLBETONBAU, Issue 8 2009
Marko Butler Dipl.-Ing.
Baustoffe; Bewehrung; Versuche Abstract Verbundmaterialien aus Feinbetonen mit textiler Bewehrung aus alkaliresistentem Glas (AR-Glas) können ausgeprägten zeitabhängigen Veränderungen hinsichtlich des mechanischen Leistungsvermögens unterliegen. Für eine zielsichere Anwendung solcher Werkstoffe im Bauwesen sind genaue Kenntnisse über die Höhe und die Ursachen dieser Leistungsverluste unabdingbar. In diesem Artikel werden anhand von Ergebnissen aktueller Untersuchungen entscheidende Mechanismen für die Alterungsprozesse dargestellt, die aus der Zusammensetzung der Feinbetone resultieren. Dazu wurden aus verschiedenen Betonzusammensetzungen, die sich maßgeblich in ihrer Hydratationskinetik und Alkalität unterschieden, textilbewehrte Dehnkörper hergestellt und nach beschleunigter Alterung geprüft. Dehnkörper aus Feinbeton mit hoher Alkalität (das Bindemittel bestand nur aus CEM I) zeigten dramatische Einbußen bei Zugfestigkeit und Bruchdehnung. Das Leistungsvermögen von Proben aus Feinbetonen mit puzzolanisch abgepufferter Bindemittelzusammensetzung und gleichzeitig reduziertem Portlandzementklinkeranteil zeigte sich dagegen weitgehend unbeeinflusst von Alterungsprozessen. Mit Hilfe von beidseitigen Garnauszugversuchen an beschleunigt gealterten Feinbetonproben wurden die für das unterschiedliche Materialverhalten verantwortlichen Degradationsmechanismen aufgeklärt. Neben der mechanischen Prüfung wurde dazu auch die Interphase zwischen Fasern und umgebendem Feinbeton mit bildgebenden und analytischen Verfahren charakterisiert. Die festgestellten Einbußen im Leistungsvermögen des Garn-Matrix-Verbundes konnten überwiegend auf die Neubildung von ungünstig strukturierten Hydratationsprodukten in der Interphase Filament-Matrix bzw. in Filamentzwischenräumen zurückgeführt werden. Die Morphologie dieser Phase wird maßgeblich von der Bindemittelzusammensetzung bestimmt. Korrosion des AR-Glases als Schadensursache kann unter ungünstigen Umständen auch eine große Rolle spielen, ist aber bei geeigneter Matrixformulierung von untergeordneter Bedeutung. Effect of Matrix Composition on the Durability of Concretes Reinforced with Glass Fibre Fabric The mechanical performance of composites made of finegrained concrete and textile reinforcement can worsen markedly with increasing age if alkali-resistant glass (AR-glass) is used as the reinforcing material. For reliable practical applications of textile-reinforced concrete, precise knowledge as to the extent and causes of such degradation is indispensable. This paper discusses important aging mechanisms resulting from the composition of fine-grained concrete. Tensile tests on composites made of different concrete compositions distinguished from one another by their hydration kinetics and alkalinity were performed before and after accelerated aging. Composites made of concrete with high alkalinity showed dramatic losses of tensile strength and strain capacity. In contrast the mechanical performance of composites whose binders had reduced Portland cement clinker content plus added puzzolana was hardly affected by the accelerated aging. To clarify the mechanisms of degradation, yarn pullout tests were performed on specimens of equal matrix composition and age. Additionally, the morphology of the interphase between matrix and fibre was characterised using direct microscopic examination and analytical methods. The new formation of unfavourably structured products of hydration in the filament-matrix interphase and/or in the empty spaces between filaments was found to be the main reason for the performance losses observed. The morphology of these hydration products is determined to a great extent by the binder composition. Under unfavourable conditions corrosion of AR-glass can occur as well and lead to distinct composite damage. However, if the formulation of the binder is proper, bulk glass corrosion is of minor importance. [source]