PS Molecules (ps + molecule)

Distribution by Scientific Domains


Selected Abstracts


One novel and one recurrent mutation in the PROS1 gene cause type I protein S deficiency in patients with pulmonary embolism associated with deep vein thrombosis

AMERICAN JOURNAL OF HEMATOLOGY, Issue 10 2006
Kazuhiro Mizukami
Abstract We investigated the molecular basis of type I protein S (PS) deficiency in two unrelated Japanese families, in which both probands developed pulmonary embolism associated with deep vein thrombosis. Nucleotide sequencing of amplified DNA revealed distinct point mutations in the PROS1 gene of the probands, which were designated protein S Sapporo 1 and protein S Sapporo 2. Additional mutations in the PROS1 gene were excluded by DNA sequencing of all exons and intron/exon boundaries. In the 25-year-old Japanese male patient who carried protein S Sapporo 1, we identified a heterozygous A-to-T change in the invariant ag dinucleotide of the acceptor splice site of intron f of the PROS1 gene. This mutation is a novel splice site mutation that impairs normal mRNA splicing, leading to exon 7 skipping, which was confirmed by platelet mRNA analysis. Translation of this mutant transcript would result in a truncated protein that lacks the entire epidermal growth factor-like domain 3 of the PS molecule. In a 31-year-old Japanese male and his younger brother who each carried protein S Sapporo 2, we detected a previously described heterozygous T-to-C transition at nucleotide position 1147 in exon 10 of the PROS1 gene, which predicts an amino acid substitution of tryptophan by arginine at residue 342 in the laminin G1 domain of the PS molecule. Both mutations would cause misfolding of the PS protein, resulting in the impairment of secretion, which is consistent with the type I PS deficiency phenotype. Am. J. Hematol., 2006. © 2006 Wiley-Liss, Inc. [source]


Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2007
Xiaodong Cao
Abstract In this work we have studied the utilization of multiwalled carbon nanotubes (MWCNTs) as filler-reinforcement to improve the performance of plasticized starch (PS). The PS/MWCNTs nanocomposites were successfully prepared by a simple method of solution casting and evaporation. The morphology, thermal behavior, and mechanical properties of the films were investigated by means of scanning electron microscopy, wide-angle X-ray diffraction, differential scanning calorimetry, and tensile testing. The results indicated that the MWCNTs dispersed homogeneously in the PS matrix and formed strong hydrogen bonding with PS molecules. Compared with the pure PS, the tensile strength and Young's modulus of the nanocomposites were enhanced significantly from 2.85 to 4.73 MPa and from 20.74 to 39.18 MPa with an increase in MWCNTs content from 0 to 3.0 wt %, respectively. The value of elongation at break of the nanocomposites was higher than that of PS and reached a maximum value as the MWCNTs content was at 1.0 wt %. Besides the improvement of mechanical properties, the incorporation of MWCNTs into the PS matrix also led to a decrease of water sensitivity of the PS-based materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source]


A VANADIUM BROMOPEROXIDASE CATALYZES THE FORMATION OF HIGH-MOLECULAR-WEIGHT COMPLEXES BETWEEN BROWN ALGAL PHENOLIC SUBSTANCES AND ALGINATES,

JOURNAL OF PHYCOLOGY, Issue 1 2009
Leonardo Tavares Salgado
The interaction between phenolic substances (PS) and alginates (ALG) has been suggested to play a role in the structure of the cell walls of brown seaweeds. However, no clear evidence for this interaction was reported. Vanadium bromoperoxidase (VBPO) has been proposed as a possible catalyst for the binding of PS to ALG. In this work, we studied the interaction between PS and ALG from brown algae using size exclusion chromatography (SEC) and optical tweezers microscopy. The analysis by SEC revealed that ALG forms a high-molecular-weight complex with PS. To study the formation of this molecular complex, we investigated the in vitro interaction of purified ALG from Fucus vesiculosus L. with purified PS from Padina gymnospora (Kütz.) Sond., in the presence or absence of VBPO. The interaction between PS and ALG only occurred when VBPO was added, indicating that the enzyme is essential for the binding process. The interaction of these molecules led to a reduction in ALG viscosity. We propose that VBPO promotes the binding of PS molecules to the ALG uronic acids residues, and we also suggest that PS are components of the brown algal cell walls. [source]


Compatibilization of Immiscible Poly(propylene)/Polystyrene Blends Using Clay

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 3 2003
Yong Wang
Abstract Inorganic clay was investigated as a compatibilizer for immiscible poly(propylene)/polystyrene blends. A substantial decrease in the number of polystyrene particles was seen after adding small amounts of an organically treated clay (2,5 wt.-%) to the blends. A possible mechanism for this kind of compatibilization is discussed, but these unique and completely new findings need further verification. Schematic representation of the intercalated structure in PP/PS/OMMT blends: (a) PP and PS confined in the same gallery of OMMT, and (b) parts of PP and PS molecules located outside the gallery serving as a compatibilizer. [source]


Structural and mechanical properties of polystyrene nanocomposites with 1D titanate nanostructures prepared by an extrusion process

POLYMER COMPOSITES, Issue 9 2009
Polona Umek
Polystyrene (PS) nanocomposites with titanate nanotubes and titanate nanoribbons were prepared by an extrusion process at 180°C. Nanocomposites with 1 wt% of nanofillers and pure PS that had also been exposed to the extrusion process were comparatively examined with scanning electron microscopy (SEM), electron dispersive X-ray spectrometry (EDS) mapping, solid state proton nuclear magnetic resonance measurements (1H NMR), tensile tests, and shear creep measurements. SEM images and EDS mapping analysis show that titanate nanoribbons homogeneously distribute at a micrometer length-scale in the PS matrix during the extrusion process. This is not the case for titanate nanotubes, which show a stronger tendency to form clusters. Solid state 1H NMR studies, however, proved that the nanocomposites are inhomogeneous at a nanometric scale where structural components with highly mobile PS molecules coexist with domains of rigid PS molecules. Differences in the 1H spin-lattice relaxation at and above the glass transition temperature Tg = 373 K suggest that nanofillers affect the thermodynamic properties of nanocomposite domains. Only a slight increase in mechanical tensile properties was observed in the case of the nanocomposite containing 1 wt% of titanate nanoribbons (TiNRs) probably reflecting a weak interaction between the polymer matrix and the nanofiller. Nevertheless, our results prove that the use of functionalized TiNRs may, in combination with the extrusion process, represent a very promising starting point for the preparation of TiNR nanocomposites at the industrial level. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]