Prototypic Member (prototypic + member)

Distribution by Scientific Domains


Selected Abstracts


Crystal structure of calcium-free human sorcin: A member of the penta-EF-hand protein family

PROTEIN SCIENCE, Issue 12 2001
Xiaoling Xie
Abstract Sorcin is a 22 kD calcium-binding protein that is found in a wide variety of cell types, such as heart, muscle, brain and adrenal medulla. It belongs to the penta-EF-hand (PEF) protein family, which contains five EF-hand motifs that associate with membranes in a calcium-dependent manner. Prototypic members of this family are the calcium-binding domains of calpain, such as calpain dVI. Full-length human sorcin has been crystallized in the absence of calcium and the structure determined at 2.2 Å resolution. Apart from an extended N-terminal portion, the sorcin molecule has a globular shape. The C-terminal domain is predominantly ,-helical, containing eight ,-helices and connecting loops incorporating five EF hands. Sorcin forms dimers through the association of the unpaired EF5, confirming this as the mode of association in the dimerization of PEF proteins. Comparison with calpain dVI reveals that the general folds of the individual EF-hand motifs are conserved, especially that of EF1, the novel EF-hand motif characteristic of the family. Detailed structural comparisons of sorcin with other members of PEF indicate that the EF-hand pair EF1,EF2 is likely to correspond to the two physiologically relevant calcium-binding sites and that the calcium-induced conformational change may be modest and localized within this pair of EF-hands. Overall, the results derived from the structural observations support the view that, in sorcin, calcium signaling takes place through the first pair of EF-hands. [source]


The Janus-faced atracotoxins are specific blockers of invertebrate KCa channels

FEBS JOURNAL, Issue 16 2008
Simon J. Gunning
The Janus-faced atracotoxins are a unique family of excitatory peptide toxins that contain a rare vicinal disulfide bridge. Although lethal to a wide range of invertebrates, their molecular target has remained enigmatic for almost a decade. We demonstrate here that these toxins are selective, high-affinity blockers of invertebrate Ca2+ -activated K+ (KCa) channels. Janus-faced atracotoxin (J-ACTX)-Hv1c, the prototypic member of this toxin family, selectively blocked KCa channels in cockroach unpaired dorsal median neurons with an IC50 of 2 nm, but it did not significantly affect a wide range of other voltage-activated K+, Ca2+ or Na+ channel subtypes. J-ACTX-Hv1c blocked heterologously expressed cockroach large-conductance Ca2+ -activated K+ (pSlo) channels without a significant shift in the voltage dependence of activation. However, the block was voltage-dependent, indicating that the toxin probably acts as a pore blocker rather than a gating modifier. The molecular basis of the insect selectivity of J-ACTX-Hv1c was established by its failure to significantly inhibit mouse mSlo currents (IC50 , 10 ,m) and its lack of activity on rat dorsal root ganglion neuron KCa channel currents. This study establishes the Janus-faced atracotoxins as valuable tools for the study of invertebrate KCa channels and suggests that KCa channels might be potential insecticide targets. [source]


Role of Bcl-2 family of proteins in malignancy

HEMATOLOGICAL ONCOLOGY, Issue 2 2002
Belinda C. Baliga
Abstract B cell lymphoma gene-2 (Bcl-2) is the prototypic member of a growing family of proteins that play evolutionarily conserved, key regulatory roles in apoptosis. The Bcl-2 family members are characterized by the presence of one or more Bcl-2 homology domains and are comprised of both the prosurvival and proapoptotic proteins. Bcl-2 itself is a prosurvival member of the family and its aberrant expression has been linked to a variety of different cancers, including several hematological malignancies. Although the exact mechanism of action of Bcl-2 family of proteins in regulating apoptosis is still a matter of some debate, these proteins appear to act upstream of caspase activation. Many recent studies have shown the therapeutic potential of targeting Bcl-2 family members for the treatment of cancer. This article summarizes what is currently known about Bcl-2-like proteins and how the evolving understanding of the biology of these proteins is paving way for the development of novel cancer therapeutics. Copyright © 2001 John Wiley & Sons, Ltd. [source]


FGFR1/PI3K/AKT signaling pathway is a novel target for antiangiogenic effects of the cancer drug Fumagillin (TNP-470)

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007
Gregory J. Chen
Abstract Fibroblast growth factor-1 (FGF1), a prototypic member of the FGF family, is a potent angiogenic factor. Although FGF-stimulated angiogenesis has been extensively studied, the molecular mechanisms regulating FGF1-induced angiogenesis are poorly understood in vivo. Fumagillin, an antiangiogenic fungal metabolite, has the ability to inhibit FGF-stimulated angiogenesis in the chicken chorioallantoic membrane (CAM). In the current study, chicken CAMs were transfected with a signal peptide-containing version of the FGF1 gene construct (sp-FGF1). Transfected CAMs were then analyzed in the presence and absence of fumagillin treatment with respect to the mRNA expression levels and protein activity of the FGF1 receptor protein (FGFR1), phosphatidylinositol 3-kinase (PI3K), and its immediate downstream target, AKT-1 (protein kinase B). Treatment of sp-FGF1-transfected CAMs with fumagillin showed downregulation for both PI3K and AKT-1 proteins in mRNA expression and protein activity. In contrast, no major alterations in FGFR1 mRNA expression level were observed. Similar patterns of mRNA expression for the above three proteins were observed when the CAMs were treated with recombinant FGF1 protein in place of sp-FGF1 gene transfection. Investigation using biotin-labeled fumagillin showed that only the FGF1 receptor protein containing the cytoplasmic domain demonstrated binding to fumagillin. Furthermore, we demonstrated endothelial-specificity of the proposed antiangiogenic signaling cascade using an in vitro system. Based on these findings, we conclude that the binding of fumagillin to the cytoplasmic domain of the FGF1 receptor inhibited FGF1-stimulated angiogenesis both in vitro and in vivo. J. Cell. Biochem. 101: 1492,1504, 2007. © 2007 Wiley-Liss, Inc. [source]


Purification, crystallization and preliminary X-ray crystallographic analysis of the nucleocapsid protein of Bunyamwera virus

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2006
Qingxian Zhou
Bunyamwera virus (BUNV) is the prototypic member of the Bunyaviridae family of segmented negative-sense RNA viruses. The BUNV nucleocapsid protein has been cloned and expressed in Escherichia coli. The purified protein has been crystallized and a complete data set has been collected to 3.3,Å resolution at a synchrotron source. Crystals of the nucleocapsid protein belong to space group C2, with unit-cell parameters a = 384.7, b = 89.8, c = 89.2,Å, , = 94.4°. Self-rotation function analysis of the X-ray diffraction data has provided insight into the oligomeric state of the protein as well as the orientation of the oligomers in the asymmetric unit. The structure determination of the protein is ongoing. [source]