Proton Channel (proton + channel)

Distribution by Scientific Domains


Selected Abstracts


13C-NMR detection of STD spectra

MAGNETIC RESONANCE IN CHEMISTRY, Issue 2 2010
Christoph Räuber
Abstract We have investigated the use of 13C for the detection of saturation transfer difference (STD) NMR spectra. By detecting the STD spectrum in the 13C channel it is possible to eliminate the residual water signal in the STD-NMR spectrum. We have employed an INEPT transfer in order to shift the magnetization from the proton channel to 13C. As a sample system to check our method we have used human serum albumin and phenylalanine. We have shown that such a transfer can be accomplished and gives reasonable signal intensities. Copyright © 2009 John Wiley & Sons, Ltd. [source]


How do helix,helix interactions help determine the folds of membrane proteins?

PROTEIN SCIENCE, Issue 4 2003
Perspectives from the study of homo-oligomeric helical bundles
FRET, fluorescence resonance energy transfer; NBD, 7-nitrobenz-2-oxa-1,3-diazole; C-14 betaine, N -tetradecyl- N,N -dimethyl-3-ammonio-1-propanesulfonate; MF, mole fraction Abstract The final, structure-determining step in the folding of membrane proteins involves the coalescence of preformed transmembrane helices to form the native tertiary structure. Here, we review recent studies on small peptide and protein systems that are providing quantitative data on the interactions that drive this process. Gel electrophoresis, analytical ultracentrifugation, and fluorescence resonance energy transfer (FRET) are useful methods for examining the assembly of homo-oligomeric transmembrane helical proteins. These methods have been used to study the assembly of the M2 proton channel from influenza A virus, glycophorin, phospholamban, and several designed membrane proteins,all of which have a single transmembrane helix that is sufficient for association into a transmembrane helical bundle. These systems are being studied to determine the relative thermodynamic contributions of van der Waals interactions, conformational entropy, and polar interactions in the stabilization of membrane proteins. Although the database of thermodynamic information is not yet large, a few generalities are beginning to emerge concerning the energetic differences between membrane and water-soluble proteins: the packing of apolar side chains in the interior of helical membrane proteins plays a smaller, but nevertheless significant, role in stabilizing their structure. Polar, hydrogen-bonded interactions occur less frequently, but, nevertheless, they often provide a strong driving force for folding helix,helix pairs in membrane proteins. These studies are laying the groundwork for the design of sequence motifs that dictate the association of membrane helices. [source]


Voltage-gated proton channels: what's next?

THE JOURNAL OF PHYSIOLOGY, Issue 22 2008
Thomas E. DeCoursey
This review is an attempt to identify and place in context some of the many questions about voltage-gated proton channels that remain unsolved. As the gene was identified only 2 years ago, the situation is very different than in fields where the gene has been known for decades. For the proton channel, most of the obvious and less obvious structure,function questions are still wide open. Remarkably, the proton channel protein strongly resembles the voltage-sensing domain of many voltage-gated ion channels, and thus offers a novel approach to study gating mechanisms. Another surprise is that the proton channel appears to function as a dimer, with two separate conduction pathways. A number of significant biological questions remain in dispute, unanswered, or in some cases, not yet asked. This latter deficit is ascribable to the intrinsic difficulty in evaluating the importance of one component in a complex system, and in addition, to the lack, until recently, of a means of performing an unambiguous lesion experiment, that is, of selectively eliminating the molecule in question. We still lack a potent, selective pharmacological inhibitor, but the identification of the gene has allowed the development of powerful new tools including proton channel antibodies, siRNA and knockout mice. [source]


Mechanism of cell death and disease resistance induction by transgenic expression of bacterio-opsin

THE PLANT JOURNAL, Issue 5 2002
Dominique Pontier
Summary One of the earliest signal transduction events that trigger the hypersensitive response (HR) of plants against pathogen attack is thought to be an alteration of proton flux across the plasma membrane (PM). However, no direct genetic evidence for the involvement of PM-localised proton channels or pumps in the induction of this response has been reported. We previously showed that expression of the bacterial proton pump bacterio-opsin (bO) in transgenic plants resulted in the spontaneous activation of the HR. Here we show that the bO protein is likely localised to the PM in transgenic tobacco plants. Furthermore, mutational analysis shows that induction of the HR by bO expression is dependent upon the capability of bO to translocate protons. Although bO functions as a light-driven proton pump in Halobacteria when assembled with retinal, we also show by mutational analysis that this chromophore binding is unnecessary for its in planta activity. Taken together, our results suggest that expression of bO in plants leads to the insertion of a passive proton channel into the PM. The activity of this channel in the PM results in spontaneous activation of cell death and HR-associated phenotypes including enhanced resistance to a broad spectrum of plant pathogens. Our work provides direct molecular evidence to support a working model in which alterations in ionic homeostasis at the level of the PM may work as one of the critical steps in the signalling pathway for the activation of the HR. [source]


Voltage-gated proton channels: what's next?

THE JOURNAL OF PHYSIOLOGY, Issue 22 2008
Thomas E. DeCoursey
This review is an attempt to identify and place in context some of the many questions about voltage-gated proton channels that remain unsolved. As the gene was identified only 2 years ago, the situation is very different than in fields where the gene has been known for decades. For the proton channel, most of the obvious and less obvious structure,function questions are still wide open. Remarkably, the proton channel protein strongly resembles the voltage-sensing domain of many voltage-gated ion channels, and thus offers a novel approach to study gating mechanisms. Another surprise is that the proton channel appears to function as a dimer, with two separate conduction pathways. A number of significant biological questions remain in dispute, unanswered, or in some cases, not yet asked. This latter deficit is ascribable to the intrinsic difficulty in evaluating the importance of one component in a complex system, and in addition, to the lack, until recently, of a means of performing an unambiguous lesion experiment, that is, of selectively eliminating the molecule in question. We still lack a potent, selective pharmacological inhibitor, but the identification of the gene has allowed the development of powerful new tools including proton channel antibodies, siRNA and knockout mice. [source]


Mechanism of cell death and disease resistance induction by transgenic expression of bacterio-opsin

THE PLANT JOURNAL, Issue 5 2002
Dominique Pontier
Summary One of the earliest signal transduction events that trigger the hypersensitive response (HR) of plants against pathogen attack is thought to be an alteration of proton flux across the plasma membrane (PM). However, no direct genetic evidence for the involvement of PM-localised proton channels or pumps in the induction of this response has been reported. We previously showed that expression of the bacterial proton pump bacterio-opsin (bO) in transgenic plants resulted in the spontaneous activation of the HR. Here we show that the bO protein is likely localised to the PM in transgenic tobacco plants. Furthermore, mutational analysis shows that induction of the HR by bO expression is dependent upon the capability of bO to translocate protons. Although bO functions as a light-driven proton pump in Halobacteria when assembled with retinal, we also show by mutational analysis that this chromophore binding is unnecessary for its in planta activity. Taken together, our results suggest that expression of bO in plants leads to the insertion of a passive proton channel into the PM. The activity of this channel in the PM results in spontaneous activation of cell death and HR-associated phenotypes including enhanced resistance to a broad spectrum of plant pathogens. Our work provides direct molecular evidence to support a working model in which alterations in ionic homeostasis at the level of the PM may work as one of the critical steps in the signalling pathway for the activation of the HR. [source]