Proteomic Research (proteomic + research)

Distribution by Scientific Domains


Selected Abstracts


Improved conditions for fluorescent staining of proteins with 4,4,-dianilino-1,1,-binaphthyl-5,5,-disulfonic acid in SDS-PAGE

ELECTROPHORESIS, Issue 22 2008
Wei-Tao Cong
Abstract A simple and sensitive fluorescent staining method for the detection of proteins in SDS-PAGE, namely IB (improved 4,4,-dianilino-1,1,-binaphthyl-5,5,-disulfonic acid) stain, is described. Non-covalent hydrophobic probe 4,4,-dianilino-1,1,-binaphthyl-5,5,-disulfonic acid was applied as a fluorescent dye, which can bind to hydrophobic sites in proteins non-specifically. As low as 1,ng of protein band can be detected briefly by 30,min washing followed by 15,min staining without the aiding of stop or destaining step. The sensitivity of the new presented protocol is similar to that of SYPRO Ruby, which has been widely accepted in proteomic research. Comparative analysis of the MS compatibility of IB stain and SYPRO Ruby stain allowed us to address that IB stain is compatible with the downstream of protein identification by PMF. [source]


Separation of nuclear protein complexes by blue native polyacrylamide gel electrophoresis

ELECTROPHORESIS, Issue 7 2006
Zora Nováková
Abstract The nucleus is a highly structured organelle with distinct compartmentalization of specific functions. To understand the functions of these nuclear compartments, detailed description of protein complexes which form these structures is of crucial importance. We explored therefore the potential of blue native PAGE (BN-PAGE) method for the separation of nuclear protein complexes. We focused on (i),solubility and stability of nuclear complexes under conditions prerequisite for the separation by BN-PAGE, (ii),improved separation of native nuclear protein complexes using 2-D colorless native/blue native PAGE (CN-/BN-PAGE), and (iii),mass spectrometric analysis of protein complexes which were isolated directly from native 1-D or from 2-D CN/BN-PAGE gels. The suitability of BN-PAGE for nuclear proteomic research is demonstrated by the successful separation of polymerase,I and polymerase,II complexes, and by mass spectrometric determination of U1 small nuclear ribonucleoprotein particle composition. Moreover, practical advice for sample preparation is provided. [source]


Thiol-reactive dyes for fluorescence labeling of proteomic samples

ELECTROPHORESIS, Issue 14 2003
Kamala Tyagarajan
Abstract Covalent derivatization of proteins with fluorescent dyes prior to separation is increasingly used in proteomic research. This paper examines the properties of several commercially available iodoacetamide and maleimide dyes and discusses the conditions and caveats for their use in labeling of proteomic samples. The iodoacetamide dyes BODIPY TMR cadaverine IA and BODIPY Fl C1 -IA were highly specific for cysteine residues and showed little or no nonspecific labeling even at very high dye:thiol ratios. These dyes also showed minimal effects on pI's of standard proteins. Some iodoacetamide dyes, (5-TMRIA and eosin-5-iodoacetamide) and some maleimide dyes (ThioGlo I and Rhodamine Red C2 maleimide) exhibited nonspecific labeling at high dye:thiol ratios. Labeling by both iodoacetamide and maleimide dyes was inhibited by tris(2-carboxyethyl)phosphine (TCEP); interactions between TCEP and dye were also observed. Thiourea, an important component of sample solubilization cocktails, inhibited labeling of proteins with iodoacetamide dyes but not with maleimide dyes. Maleimide dyes may serve as an alternative for labeling proteins where it is essential to have thiourea in the solubilization buffer. Covalent derivatization by BODIPY TMR cadaverine IA, BODIPY Fl C1 -IA or Rhodamine Red C2 maleimide was also demonstrated to be compatible with in-gel digestion and peptide mass fingerprinting by matrix assisted laser desorption/ionization-mass spectrometry and allowed successful protein identification. [source]


Prognostic evaluation of epidermal fatty acid-binding protein and calcyphosine, two proteins implicated in endometrial cancer using a proteomic approach

INTERNATIONAL JOURNAL OF CANCER, Issue 10 2008
Zhengyu Li
Abstract With the aim to translate the discovery from proteomic research into clinical applications, we identified epidermal fatty acid-binding protein (E-FABP) and calcyphosine (CAPS) by MALDI-Q-TOF MS and validated their overexpressions by immunoblotting. Their expression statuses were examined by immunohistochemistry in 39 normal endometrium, 29 endometrial intraepithelial neoplasia (EIN) and 84 endometrial cancer (EC) cases. We evaluated the correlations to the clinicopathologic characteristics and determined whether these proteins had prognostic significance. Expressions of E-FABP and CAPS were increased 2.64- and 2.18-fold in EC by immunoblotting. Immunoreactivity of both E-FABP and CAPS were stronger in EC than in EIN or normal tissues (p < 0.001 and < 0.001). Stronger immunoreactivity of E-FABP and CAPS were shown to present with poor differentiation (p = 0.032 and 0.001), but no relevance was observed with staging (p = 1.368 and 4.306). Survival analysis indicated that immunoreactivity of CAPS was correlated to poor survival (p = 0.018), but E-FABP status appeared to be no correlation to the clinical outcome of patients (p = 0.865). Multivariate analysis indicated that CAPS might be an independent prognostic factor for survival in patients with EC (p = 0.008). Results demonstrated the ubiquitous overexpressions of E-FABP and CAPS in EC and the correlations to the clinicopathologic parameters. CAPS might be a potential prognostic factor for survival in patients with EC. The research pattern from proteomics to clinical specimens would have widespread applications. © 2008 Wiley-Liss, Inc. [source]


Using enrichment index for quality control of secretory protein sample and identification of secretory proteins

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 3 2009
Yong Chen
Abstract Analysis of secretory proteins is an important area in proteomic research. We propose that a good secretory protein sample should be enriched with known secretory proteins, and a secretory protein should be enriched in the secretory protein sample compared with its corresponding soluble cell lysate. Positive identifications of proteins were subjected to quantitation of spectral counts, which reflect relative protein abundance. Enrichment index of the sample (EIS) and the enrichment index for protein (EIP) were obtained by comparing proteins identified in the secretory protein sample and those in the soluble cell lysate sample. The quality of the secretory protein sample can be represented by EIS. EIP was used to identify the secretory proteins. The secretory proteins from mouse dendritic cell sarcoma (DCS) were analyzed by MS. The EISs of two samples were 75.4 and 84.65, respectively. 72 proteins were significantly enriched in secretory protein samples, of which 42 proteins were either annotated in Swiss-Prot and/or predicted by signal peptides to be secretory. In the remaining 30 proteins, 12 and 15 proteins were positively predicted by SecretomeP and ProP, respectively, and 5 proteins were positive by both methods. Furthermore, 11 proteins were found to be present in exosome in other studies that involved mice dendritic cell lines. We suggest that this assessment method is helpful for systemic research of secretory proteins and biomarker discovery for diseases such as cancer. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Site-specific detection of S -nitrosylated PKB ,/Akt1 from rat soleus muscle using CapLC-Q-TOFmicro mass spectrometry

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 9 2005
Xiao-Ming Lu
Abstract Protein Kinase B,(PKB,, or Akt1) is believed to play a crucial role in programmed cell death, cancer progression and the insulin-signaling cascade. The protein is activated by phosphorylation at multiple sites and subsequently phosphorylates and activates eNOS. Free cysteine residues of the protein may capture reactive, endogenously produced nitric oxide (NO) as S -nitrosothiols. Site-specific detection of S -nitrosylated cysteine residues, usually at low stoichiometry, has been a major challenge in proteomic research largely due to the lack of mass marker for S -nitrosothiols that are very labile under physiologic conditions. In this report we describe a sensitive and specific MS method for detection of S -nitrosothiols in PKB ,/Akt1 in rat soleus muscle. PKB ,/Akt1 was isolated by immunoprecipitation and 2D-gel electrophoresis, subjected to in-gel tryptic digestion, and cysteinyl nitrosothiols were reacted with iodoacetic acids [2-C12/C13 = 50/50] under ascorbate reduction conditions. This resulted in the production of relatively stable carboxymethylcysteine (CMC) immonium ions (m/z 134.019 and m/z 135.019) within a narrow argon collision energy (CE = 30 ± 5 V) in the high MS noise region. In addition, free and disulfide-linked cysteine residues were converted to carboxyamidomethylcysteines (CAM). Tryptic S -nitrosylated parent ion was detected with a mass accuracy of 50 mDa for the two CMC immonium ions at the triggered elution time during capillary liquid chromatography (LC) separation. A peptide containing Cys296 was discriminated from four co-eluting tryptic peptides under lock mass conditions (m/z 785.8426). S -nitrosothiol in the tryptic peptide, ITDFGLBKEGIK (B: CAM, [M + 2H]2+ = 690.86, Found: 690.83), is believed to be present at a very low level, since the threshold for the CMC immonium trigger ions was set at 3 counts/s in the MS survey. The high levels of NO that are produced under stress conditions may result in increased S -nitrosylation of Cys296 which blocks disulfide bond formation between Cys296 and Cys310 and suppresses the biological effects of PKB ,/Akt1. With the procedures developed here, this process can be studied under physiological and pathological conditions. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Characterization of sialylated and fucosylated glycopeptides of ,2-glycoprotein I by a combination of HILIC LC and MALDI MS/MS

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 6-7 2010
Akira Kondo
Abstract Characterization of low microgram levels of glycoprotein remains a challenge due to extensive heterogeneity of the conjugated N -glycans at each individual glycosylation site. We present an optimized, sensitive workflow for glycopeptide isolation and characterization that exploits the complementary features of RP (Poros R2) and hydrophilic (zwitter-ionic hydrophilic interaction chromatography) chromatographic resins. The glycopeptide analysis workflow was applied to human ,2-glycoprotein I (,2-GPI, apolipoprotein H), which contains multiple N -glycosylation sites. Conditions for rapid proteolytic digestion of ,2-GPI using low-specificity proteases were optimized to detect ,2-GPI glycopeptides by MS. We demonstrate the importance of ensuring sufficient column capacity of both hydrophobic and hydrophilic stationary phases for optimal glycoprofiling by MS. The enriched glycopeptides were characterized using MALDI quadrupole TOF MS/MS. A total of 23 glycan structures, including sialylated bi- and tri-antennary complex type glycans, were characterized at three N -glycosylation sites, namely Asn-143, Asn-174 and Asn-234, of ,2-GPI. Further exploration of the complementary nature of RP and HILIC stationary phases for glycopeptide isolation prior to MS analysis may eventually enable systematic analysis of complex glycoprotein samples in functional proteomic research and advance our understanding of the biological role of protein glycosylation. [source]


Atomic force microscopy: A powerful molecular toolkit in nanoproteomics

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 24 2009
Yves F. DufrêneArticle first published online: 7 OCT 200
Abstract Analysing microbial cell surface proteins is a challenging task in current microbial proteomic research, which has major implications for drug design, vaccine development, and microbial monitoring. In this context, atomic force microscopy (AFM) has recently emerged has a powerful characterization platform, providing valuable insights into the surface proteome of microbial cells. The aim of this article is to show how advanced AFM techniques, that all have in common functionalization of the AFM tip with specific molecules, can be used to answer pertinent questions related to surface-associated proteins, such as what is their spatial arrangement on the cell surface, and what are the forces driving their interaction with the environment? [source]


,Proteomic Basics , Sample Preparation and Separation': The 1st European Summer School in Kloster Neustift 12,18 August, 2007 Brixen/Bressanone, South Tyrol, Italy

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 2 2008
Katrin Marcus Dr.
Abstract Proteomics is rapidly developing into a routine approach for protein analysis in many laboratories. The series of European-wide Summer Schools ,Proteomics Basics' (http://www.proteomic-basics.eu/) aims at teaching of comprehensive knowledge in proteomics research and applied technologies for master and graduate students and postdocs currently moving into the field of proteomic research. In the next 3,years the series will cover the theoretical basis of the fundamental topics in the various areas of proteomic analysis, i.e. sample preparation and handling, mass spectrometry, post-translational modifications and quantitation given by leading experts in the field. This summer school series embodies a unique advantage in comparison with conventional scientific meetings and university curricula: internationally renowned experts will give a detailed perspective view of the fundamentals of their particular proteome research area, something which is usually not encountered at conferences and congresses. Here, we give a report on the first European Summer School ,Sample Preparation and Handling' within the series ,Proteomic Basics' that was held at the monastery in Neustift close to Bressanone/Brixen, Italy from August 12 to 18, 2007. [source]


Protein probabilities in shotgun proteomics: Evaluating different estimation methods using a semi-random sampling model

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 23 2006
Xiaofang Xue
Abstract The calculation of protein probabilities is one of the most intractable problems in large-scale proteomic research. Current available estimating methods, for example, ProteinProphet, PROT_PROBE, Poisson model and two-peptide hits, employ different models trying to resolve this problem. Until now, no efficient method is used for comparative evaluation of the above methods in large-scale datasets. In order to evaluate these various methods, we developed a semi-random sampling model to simulate large-scale proteomic data. In this model, the identified peptides were sampled from the designed proteins and their cross-correlation scores were simulated according to the results from reverse database searching. The simulated result of 18 control proteins was consistent with the experimental one, demonstrating the efficiency of our model. According to the simulated results of human liver sample, ProteinProphet returned slightly higher probabilities and lower specificity than real cases. PROT_PROBE was a more efficient method with higher specificity. Predicted results from a Poisson model roughly coincide with real datasets, and the method of two-peptide hits seems solid but imprecise. However, the probabilities of identified proteins are strongly correlated with several experimental factors including spectra number, database size and protein abundance distribution. [source]


The use of mass spectrometry for the proteomic analysis of glycosylation

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 14 2006
Willy Morelle Dr.
Abstract Of all protein PTMs, glycosylation is by far the most common, and is a target for proteomic research. Glycosylation plays key roles in controlling various cellular processes and the modifications of the glycan structures in diseases highlight the clinical importance of this PTM. Glycosylation analysis remains a difficult task. MS, in combination with modern separation methodologies, is one of the most powerful and versatile techniques for the structural analysis of glycoconjugates. This review describes methodologies based on MS for detailed characterization of glycoconjugates in complex biological samples at the sensitivity required for proteomic work. [source]


Is GRP78/BiP a potential salivary biomarker in patients with rheumatoid arthritis?

PROTEOMICS - CLINICAL APPLICATIONS, Issue 3 2010
Laura Giusti
Abstract Purpose: In the last few years, serum and joint synovial fluid have been extensively analyzed for the proteomic research of rheumatoid arthritis (RA) biomarkers. Nonetheless, to date, there have been no studies investigating salivary biomarkers in this condition. Therefore, aim of this study is to investigate the presence of potential biomarkers of RA in human whole saliva. Experimental design: We combined 2-DE and MS to analyze the whole saliva protein profile of 20 RA patients in comparison with 20 sex- and age-matched healthy subjects. Results: Eight salivary proteins resulted differentially expressed, namely calgranulin A, calgranulin B, apolipoprotein A-1, 6-phosphogluconate dehydrogenase, peroxiredoxin 5, epidermal fatty acid-binding protein, 78,kDa glucose-regulated protein precursor (GRP78/BiP), and 14-3-3 proteins. It is particularly interesting that chaperone GRP78/BiP showed the greatest increase in RA patients. This finding was validated by Western Blot analysis and the over-expression of GRP78/BiP appear to be distinctive of RA and drugs treatment independent. Conclusions and clinical relevance: This study provides a rationale for further studies aimed at evaluating any correlation between GRP78/BiP and different clinical/serological aspects of the disease in order to improve the diagnostic algorithms of RA. [source]


Proteomics: New insights into rheumatic diseases

PROTEOMICS - CLINICAL APPLICATIONS, Issue 2 2009
Emilio Camafeita
Abstract Tremendous advances undergone in electrophoresis, chromatography, and MS have led proteomic research to unprecedented achievement over the last decade. Proteomics is presently employed for assessing protein expression levels, for monitoring cellular activities and for determination of biochemical pathways, revolutionizing the way we study disease by opening up the possibility to decipher the pathogenesis of clinical manifestations. Over 200 disorders including osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis are considered rheumatic diseases (RDs), which affect the musculoskeletal system (joints and other supporting structures of the body such as muscles, tendons, ligaments, and bones) and are a leading cause of disability among older adults. Despite that an autoimmune origin has been proposed for some RDs like RA, the pathogenesis of most of these diseases is still unclear. Therefore, proteomic research on RDs, notably OA and RA, can help clarify underlying disease mechanisms, develop biomarkers to improve early detection, measure response to treatment, and devise new therapies. Achievements in the field of proteomics research on RDs are summarized in this work. [source]


Fast visible dye staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels compatible with matrix assisted laser desorption/ionization-mass spectrometry

ELECTROPHORESIS, Issue 7-8 2004
Jung-Kap Choi
Abstract A fast and matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) compatible protein staining method in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1- and 2-D SDS-PAGE) is described. It is based on the counterion dye staining method that employs oppositely charged two dyes, zincon (ZC) and ethyl violet (EV) to form an ion-pair complex. The protocol, including fixing, staining and quick washing steps, can be completed in 1,1.5 h depending upon gel thickness. It has a sensitivity of 4,8 ng, comparable to that of colloidal Coomassie Brilliant Blue G (CBBG) staining with phosphoric acid in the staining solution. The counterion dye stain does not induce protein modifications that complicate interpretation of peptide mapping data from MS. Considering the speed, sensitivity and compatibility with MS, the counterion dye stain may be more practical than any other dye-based protein stains for routine proteomic researches. [source]


Automated technologies and novel techniques to accelerate protein crystallography for structural genomics

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 4 2008
Babu A. Manjasetty Dr.
Abstract The sequence infrastructure that has arisen through large-scale genomic projects dedicated to protein analysis, has provided a wealth of information and brought together scientists and institutions from all over the world. As a consequence, the development of novel technologies and methodologies in proteomics research is helping to unravel the biochemical and physiological mechanisms of complex multivariate diseases at both a functional and molecular level. In the late sixties, when X-ray crystallography had just been established, the idea of determining protein structure on an almost universal basis was akin to an impossible dream or a miracle. Yet only forty years after, automated protein structure determination platforms have been established. The widespread use of robotics in protein crystallography has had a huge impact at every stage of the pipeline from protein cloning, over-expression, purification, crystallization, data collection, structure solution, refinement, validation and data management- all of which have become more or less automated with minimal human intervention necessary. Here, recent advances in protein crystal structure analysis in the context of structural genomics will be discussed. In addition, this review aims to give an overview of recent developments in high throughput instrumentation, and technologies and strategies to accelerate protein structure/function analysis. [source]


Popitam: Towards new heuristic strategies to improve protein identification from tandem mass spectrometry data

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 6 2003
Patricia Hernandez
Abstract In recent years, proteomics research has gained importance due to increasingly powerful techniques in protein purification, mass spectrometry and identification, and due to the development of extensive protein and DNA databases from various organisms. Nevertheless, current identification methods from spectrometric data have difficulties in handling modifications or mutations in the source peptide. Moreover, they have low performance when run on large databases (such as genomic databases), or with low quality data, for example due to bad calibration or low fragmentation of the source peptide. We present a new algorithm dedicated to automated protein identification from tandem mass spectrometry (MS/MS) data by searching a peptide sequence database. Our identification approach shows promising properties for solving the specific difficulties enumerated above. It consists of matching theoretical peptide sequences issued from a database with a structured representation of the source MS/MS spectrum. The representation is similar to the spectrum graphs commonly used by de novo sequencing software. The identification process involves the parsing of the graph in order to emphazise relevant sections for each theoretical sequence, and leads to a list of peptides ranked by a correlation score. The parsing of the graph, which can be a highly combinatorial task, is performed by a bio-inspired algorithm called Ant Colony Optimization algorithm. [source]


Introducing proteomics in the undergraduate curriculum: A simple 2D gel electrophoresis exercise with serum proteins

BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 1 2010
Thomas D. Kim
Abstract Two-dimensional gel electrophoresis (2DGE) remains an important tool in the study of biological systems by proteomics. While the use of 2DGE is commonplace in research publications, there are few instructional laboratories that address the use of 2DGE for analyzing complex protein samples. One reason for this lack is the fact that the preparation of samples for 2DGE is a complex and difficult process that can commonly yield gels of poor quality and resolution. In this experiment, we use a serum-based sample to mitigate many of the sample preparation issues that occur in cell-based sample preparations and incorporate a protein precipitation method that was developed to address the problem of high-abundance proteins and dynamic range in serum proteomics research. By focusing on 2DGE apart from many other facets of proteomic experimental design, students have the opportunity to gain fruitful experience in the use of this workhorse proteomics technique. This simplified focus also makes this exercise accessible to biochemistry instructors who are not active in proteomics; the requisite techniques may require some new equipment (i.e. an isoelectric focusing apparatus), but this exercise focuses on using familiar techniques (primarily electrophoresis) to cross the threshold of a new field, proteomics. [source]