Protein-sparing Effect (protein-sparing + effect)

Distribution by Scientific Domains


Selected Abstracts


Influence of dietary composition on growth and energy reserves in tench (Tinca tinca)

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 1 2001
N. De Pedro
The effects of different protein, lipid and carbohydrate diets on growth and energy storage in tench, Tinca tinca L., were studied. Over a 2-month period fish were fed four different diets: control, protein-enriched, carbohydrate-enriched and lipid-enriched. The best growth rates were obtained with the control and protein-enriched diets; the carbohydrate diet produced the worst results (lowest specific growth rate, weight gain, nutritional index and hepatosomatic index). These results suggest that it is not advisable to reduce dietary fish protein below 35%, and that it is not possible to obtain a protein-sparing effect of either lipids or carbohydrates, at least in our experimental conditions. The high-protein diet resulted in the storage of energy excess as muscle proteins and hepatic glycogen. Tench fed the high-carbohydrate diet stored carbohydrates as muscle glycogen and reduced plasma triglycerides. Finally, both liver and muscle lipid content were in positive correlation to dietary lipid. [source]


Effects of dietary protein to energy ratios on growth and body composition of juvenile Chinese sucker, Myxocyprinus asiaticus

AQUACULTURE NUTRITION, Issue 2 2010
Y.C. YUAN
Abstract A growth experiment was conducted to investigate effect of dietary protein to energy ratios on growth and body composition of juvenile Myxocyprinus asiaticus (initial mean weight: 10.04 ± 0.53 g, mean ± SD). Nine practical diets were formulated to contain three protein levels (340, 390 and 440 g kg,1), each with three lipid levels (60, 100 and 140 g kg,1), in order to produce a range of P/E ratios (from 22.4 to 32.8 mg protein kJ,1). Each diet was randomly assigned to triplicate groups of 20 fish in 400-L indoors flow-through circular fibre glass tanks provided with sand-filtered aerated freshwater. The results showed that the growth was significantly affected by dietary P/E ratio (P < 0.05). Fish fed the diets with 440 g kg,1 protein (100 and 140 g kg,1 lipid, P/E ratio of 31.43 and 29.22 mg protein kJ,1) had the highest specific growth rates (SGR) (2.16 and 2.27% day,1, respectively). However, fish fed the diet with 390 g kg,1 protein and 140 g kg,1 lipid showed comparable growth (2.01% day,1), and had higher protein efficiency ratio (PER), protein productive value (PPV) and energy retention (ER) than other groups (P < 0.05). No significant differences in survival were found among dietary treatments. Carcass lipid content was positively correlated with dietary lipid level, but irrespective of protein level and inversely correlated with carcass moisture content. Carcass protein contents increased with increasing dietary lipid at each protein level. The white muscle and liver composition showed that lipid increased with increasing dietary lipid level (P < 0.05). Dietary protein concentrations had significant effect on condition factor (CF), hepatosomatic index (HSI) and viscerosomatic index (VSI) (P < 0.05). However, dietary lipid concentrations had no significant effect on CF, HSI (P > 0.05). Based on these observations, 440 g kg,1 protein with lipid from 100 to 140 g kg,1 (P/E ratio of 29.22 to 31.43 mg protein kJ,1) seemed to meet minimum requirement for optimal growth and feed utilization, and lipid could cause protein-sparing effect in diets for juvenile Chinese sucker. [source]


Growth and body composition of juvenile white shrimp, Litopenaeus vannamei, fed different ratios of dietary protein to energy

AQUACULTURE NUTRITION, Issue 6 2008
Y. HU
Abstract A 10-week feeding experiment was conducted to evaluate the effect of different protein to energy ratios on growth and body composition of juvenile Litopenaeus vannamei (initial average weight of 0.09 ± 0.002 g, mean ± SE). Twelve practical test diets were formulated to contain four protein levels (300, 340, 380 and 420 g kg,1) and three lipid levels (50, 75 and 100 g kg,1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The water temperature was 28.5 ± 2 °C and the salinity was 28 ± 1 g L,1 during the experimental period. The results showed that the growth was significantly (P < 0.05) affected by dietary treatments. Shrimps fed the diets containing 300 g kg,1 protein showed the poorest growth. However, shrimp fed the 75 g kg,1 lipid diets had only slightly higher growth than that fed 50 g kg,1 lipid diets at the same dietary protein level, and even a little decline in growth with the further increase of dietary lipid to 100 g kg,1. Shrimp fed the diet with 420 g kg,1protein and 75 g kg,1 lipid had the highest specific growth rate. However, shrimp fed the diet with 340 g kg,1 protein and 75 g kg,1 lipid showed comparable growth, and had the highest protein efficiency ratio, energy retention and feed efficiency ratio among dietary treatments. Triglycerides and total cholesterol in the serum of shrimp increased with increasing dietary lipid level at the same dietary protein level. Body lipid and energy increased with increasing dietary lipid level irrespective of dietary protein. Results of the present study showed that the diet containing 340 g kg,1 protein and 75 g kg,1 lipid with digestible protein/digestible energy of 21.1 mg kJ,1 is optimum for L. vannamei, and the increase of dietary lipid level has not efficient protein-sparing effect. [source]


Effects of dietary protein to carbohydrate ratios on growth and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco (Siluriformes, Bagridae, Pelteobagrus)

AQUACULTURE RESEARCH, Issue 12 2009
Wen- Juan Ye
Abstract The present experiment was conducted to investigate the effects of dietary protein to carbohydrate ratios on growth and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco. Nine diets were formulated to contain three protein levels (30%, 36% and 42%), each with three carbohydrate levels (24%, 30% and 36%). Each diet was randomly assigned to triplicate groups of 20 fish (initial mean body weight: 8.24±0.20 g) in indoor flow , through fibreglass tanks. The experiment continued for 8 weeks. Weight gain and specific growth rate were similar for the fish fed the 36% and 42% protein diets but higher than that fed the 30% protein diet. At the 36% protein level, carbohydrate contents varying from 24% to 36% (P/E ratio of 24.0,28.2 mg protein kJ,1) had no significant effects on growth performance and feed utilization (P>0.05). Protein efficiency ratio tended to increase with dietary carbohydrate level at the same protein level. Dietary treatments significantly influenced body composition (P<0.05), but not the condition factor, viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio (P>0.05). Based on these observations, 36% protein and 24,36% carbohydrate with the P/E ratio of 24.0,28.2 mg protein kJ,1 seemed suitable for optimal growth and feed utilization, and carbohydrate could cause protein-sparing effect in diets for juvenile yellow catfish. [source]


Effects of dietary protein and lipid content on growth performance and biological indices of iridescent Shark (Pangasius hypophthalmus, Sauvage 1878) fry

AQUACULTURE RESEARCH, Issue 4 2009
Preeda Phumee
Abstract Dietary protein and lipid effects on growth, body composition and indices of iridescent Shark Pangasius hypophthalmus (Sauvage 1878) fry were studied using a 4 × 2 factorial design. Triplicate groups of 10 fish per tank, with initial mean weights of 3.54,3.85 g were fed eight isocaloric diets comprising a combination of four protein levels (250, 300, 350 and 400 g kg,1 or 25%, 30%, 35% and 40%) and two lipid levels (60 and 120 g kg,1 or 6% and 12%) respectively. The fish were hand-fed to satiety twice daily for 8 weeks. Specific growth rate (SGR) and feed conversion ratio (FCR) showed significant effects (P<0.05) with variations in dietary protein and lipid. The highest SGR was observed in fish fed 40% protein/12% lipid diet but this value was not significantly (P>0.05) different from the fish fed 30% protein/12% lipid diet. The FCR was lowest for the 40/12 diet and differed significantly only with the 25/6, 25/12 and 30/6 treatments respectively. The hepatosomatic index (HSI) was significantly affected by the level of protein, but intraperitoneal fat (IPF) showed significant variation due to dietary lipid level. The HSI significantly (P<0.05) decreased when dietary protein increased from 25% to 30% but increased marginally thereafter. The IPF values increased with increased dietary lipid but decreased with increased dietary protein. Body protein was positively correlated with dietary protein content; conversely, body lipid content decreased with increase in dietary protein. The results of this experiment indicate the presence of a protein-sparing effect of lipid as fish fed 30% protein/12% lipid diet had growth and feed utilization comparable to those fed 40% protein/12% lipid diet. [source]