Proteinogenic Amino Acids (proteinogenic + amino_acids)

Distribution by Scientific Domains


Selected Abstracts


The World of , - and , -Peptides Comprised of Homologated Proteinogenic Amino Acids and Other Components

CHEMISTRY & BIODIVERSITY, Issue 8 2004
Dieter Seebach
The origins of our nearly ten-year research program of chemical and biological investigations into peptides based on homologated proteinogenic amino acids are described. The road from the biopolymer poly[ethyl (R)-3-hydroxybutanoate] to the , -peptides was primarily a step from organic synthesis methodology (the preparation of enantiomerically pure compounds (EPCs)) to supramolecular chemistry (higher-order structures maintained through non-covalent interactions). The performing of biochemical and biological tests on the , - and , -peptides, which differ from natural peptides/proteins by a single or two additional CH2 groups per amino acid, then led into bioorganic chemistry and medicinal chemistry. The individual chapters of this review article begin with descriptions of work on , -amino acids, , -peptides, and polymers (Nylon-3) that dates back to the 1960s, even to the times of Emil Fischer, but did not yield insights into structures or biological properties. The numerous, often highly physiologically active, or even toxic, natural products containing ,- and ,-amino acid moieties are then presented. Chapters on the preparation of homologated amino acids with proteinogenic side chains, their coupling to provide the corresponding peptides, both in solution (including thioligation) and on the solid phase, their isolation by preparative HPLC, and their characterization by mass spectrometry (HR-MS and MS sequencing) follow. After that, their structures, predominantly determined by NMR spectroscopy in methanolic solution, are described: helices, pleated sheets, and turns, together with stack-, crankshaft-, paddlewheel-, and staircase-like patterns. The presence of the additional CC bonds in the backbones of the new peptides did not give rise to a chaotic increase in their secondary structures as many protein specialists might have expected: while there are indeed more structure types than are observed in the , -peptide realm , three different helices (10/12 -, 12 -, and 14 -helix) if we include oligomers of trans -2-aminocyclopentanecarboxylic acid, for example , the structures are already observable with chains made up of only four components, and, having now undergone a learning process, we are able to construct them by design. The structures of the shorter , -peptides can also be reliably determined by molecular-dynamics calculations (in solution; GROMOS program package). Unlike in the case of the natural helices, these compounds' folding into secondary structures is not cooperative. In , - and , -peptides, it is possible to introduce heteroatom substituents (such as halogen or OH) onto the backbones or to incorporate heteroatoms (NH, O) directly into the chain, and, thanks to this, it has been possible to study effects unobservable in the world of the , -peptides. Tests with proteolytic enzymes of all types (from mammals, microorganisms, yeasts) and in vivo examination (mice, rats, insects, plants) showed , - and , -peptides to be completely stable towards proteolysis and, as demonstrated for two , -peptides, extraordinarily stable towards metabolism, even when bearing functionalized side chains (such as those of Thr, Tyr, Trp, Lys, or Arg). The , -peptides so far examined also normally display no or only very weak cytotoxic, antiproliferative, antimicrobial, hemolytic, immunogenic, or inflammatory properties either in cell cultures or in vivo. Even biological degradation by microbial colonies of the types found in sewage-treatment plants or in soil is very slow. That there are indeed interactions of ,- and ,-peptides with biological systems, however, can be seen in the following findings: i) organ-specific distribution takes place after intravenous (i.v.) administration in rats, ii) transport through the intestines of rodents has been observed, iii) , -peptides with positively charged side chains (Arg and Lys) settle on cell surfaces, are able to enter into mammalian cells (fibroplasts, keratinocytes, HeLa cells), and migrate into their cell nuclei (and nucleoli), and iv) in one case, it has already been established that a , -peptide derivative can up- and down-regulate gene expression rates. Besides these less sharply definable interactions, it has also been possible to construct , - and , -peptide agonists of naturally occurring peptide hormones, MHC-binding , -peptides, or amphipathic , -peptide inhibitors of membrane-bound proteins in a controlled fashion. Examples include somatostatin mimics and the suppression of cholesterol transport through the intestinal brush-border membrane (by the SR-BI-protein). The results so far obtained from investigations into peptides made up of homologues of the proteinogenic amino acids also represent a contribution to deepening of our knowledge of the natural peptides/proteins, while potential for biomedicinal application of this new class of substances has also been suggested. [source]


The SAAP force field: Development of the single amino acid potentials for 20 proteinogenic amino acids and Monte Carlo molecular simulation for short peptides,

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 13 2009
Michio Iwaoka
Abstract Molecular simulation by using force field parameters has been widely applied in the fields of peptide and protein research for various purposes. We recently proposed a new all-atom protein force field, called the SAAP force field, which utilizes single amino acid potentials (SAAPs) as the fundamental elements. In this article, whole sets of the SAAP force field parameters in vacuo, in ether, and in water have been developed by ab initio calculation for all 20 proteinogenic amino acids and applied to Monte Carlo molecular simulation for two short peptides. The side-chain separation approximation method was employed to obtain the SAAP parameters for the amino acids with a long side chain. Monte Carlo simulation for Met-enkephalin (CHO-Tyr-Gly-Gly-Phe-Met-NH2) by using the SAAP force field revealed that the conformation in vacuo is mainly controlled by strong electrostatic interactions between the amino acid residues, while the SAAPs and the interamino acid Lennard-Jones potentials are predominant in water. In ether, the conformation would be determined by the combination of the three components. On the other hand, the SAAP simulation for chignolin (H-Gly-Tyr-Asp-Pro-Glu-Thr-Gly-Thr-Trp-Gly-OH) reasonably reproduced a native-like ,-hairpin structure in water although the C-terminal and side-chain conformations were different from the native ones. It was suggested that the SAAP force field is a useful tool for analyzing conformations of polypeptides in terms of intrinsic conformational propensities of the single amino acid units. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009 [source]


Towards stereoselective radiosynthesis of ,-[11C]methyl-substituted aromatic ,-amino acids , a challenge of creation of quaternary asymmetric centre in a very short time,

JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 5-6 2007
Alexander Popkov
Abstract In positron emission tomography (PET) , -methyl amino acids have two potential applications: As analogues of neutransmitter precursors for the study of neurodegenerative diseases; as non-metabolised analogues of proteinogenic amino acids for the study of amino acid uptake into normal and cancer cells. Clinical applications of such amino acids are strongly limited due to their poor availability. We carried out [11C]methylation of metalocomplex synthons derived from protected DOPA or tyrosine. For [11C]methylation, sodium hydroxide (5 mg of fine dry powder) was sealed in a vial, which was flushed with dry nitrogen before addition of a solution of the complex (10 mg) and 11CH3I in 1,3-dimethylimidazolidin-2-one (300 µl). After 10 min at 25°C, a 9% radiochemical yield (decay-corrected) of a mixture of the diastereomeric , -[11C]methylDOPA complexes or a 7% radiochemical yield of a mixture of the diastereomeric , -[11C]methyltyrosine complexes was achieved. Individual diastereomers were successfully separated by preparative HPLC, diluted with excess of water and extracted on C18 cartridges. Optimisation of the procedure including hydrolysis of the complexes (hydrolytic deprotection of enantiomerically pure amino acids) and subsequent purification of the enantiomers of , -[11C]methylDOPA and , -[11C]methyltyrosine is underway. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Solution 1H and 13C NMR of new chiral 1,4-oxazepinium heterocycles and their intermediates from the reaction of 2,4-pentanedione with ,- L -amino acids and (R)-(,)-2-phenylglycinol

MAGNETIC RESONANCE IN CHEMISTRY, Issue 12 2003
M. Concepción Lozada
Abstract The reaction of 2,4-pentanedione (1) with (R)-(,)-2-phenylglycine methyl ester (2), (R)-(,)-2-phenylglycinol (3) and the proteinogenic amino acids (2S,3R)-(,)-2-amino-3-hydroxybutyric acid (L -threonine) (4) and (R)-(,)-2-amino-3-mercaptopropionic acid (L -cysteine) (5) methyl esters was investigated. The corresponding enamines 6, 7 and 8 were isolated and characterized spectroscopically whereas 9, which is unstable, was transformed in situ into 13. Treatment of 7, 8 and 9 with boron trifluoride etherate afforded the new [1,4]oxazepines 10, 11 and [1,4]thiazepine (12) as their BF3O, salts. The structures of the enamines and their corresponding seven-membered heterocycles were assessed by 1D and 2D NMR spectroscopy. Variable-temperature experiments revealed different molecular mobility behavior among these heterocycles. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Comparison of flow injection analysis electrospray mass spectrometry and tandem mass spectrometry and electrospray high-field asymmetric waveform ion mobility mass spectrometry and tandem mass spectrometry for the determination of underivatized amino acids

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2006
Margaret McCooeye
Twenty proteinogenic amino acids (AAs) were determined without derivatization using flow injection analysis followed by electrospray ionization mass spectrometry and tandem mass spectrometry (ESI-MS and ESI-MS/MS) and electrospray ionization high-field asymmetric waveform ion mobility mass spectrometry and tandem mass spectrometry (ESI-FAIMS-MS and ESI-FAIMS-MS/MS), in positive and negative ionization modes. Three separate sets of ESI-FAIMS conditions were used for the separation and detection of the 20 AAs. Typically ESI-FAIMS-MS showed somewhat improved sensitivity and significantly better signal-to-noise ratios than ESI-MS mainly due to the elimination of background noise. However, the difference between ESI-FAIMS-MS and ESI-MS/MS was significantly less. ESI-FAIMS was able to partially or completely resolve all the isobaric amino acid overlaps such as leucine, isoleucine and hydroxyproline or lysine and glutamine. Detection limits for the amino acids in ESI-FAIMS-MS mode ranged from 2,ng/mL for proline to 200,ng/mL for aspartic acid. Overall, ESI-FAIMS-MS is the preferred method for the quantitative analysis of AAs in a hydrolyzed yeast matrix. Copyright © 2006 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source]


Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein

BIOTECHNOLOGY PROGRESS, Issue 1 2010
Afshan S. Shaikh
Abstract Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


Determination of Biomass Composition of Catharanthusroseus Hairy Roots for Metabolic Flux Analysis

BIOTECHNOLOGY PROGRESS, Issue 6 2006
Ganesh Sriram
Metabolic flux analysis is a powerful diagnostic tool in metabolic engineering, and determination of biomass composition is indispensable to accurate flux evaluation. We report the elemental and biomolecular composition of Catharanthus roseus hairy roots, a pharmaceutically significant plant system and an important metabolic engineering target. The molecular formula of the organic material in the hairy roots was C12.0H22.7N0.4O7.6 during mid-exponential growth. The abundances of lipids, lignin, cellulose, hemicellulose, starch, protein, proteinogenic amino acids, mineral ash, and moisture in the biomass were quantified. Analysis of water-soluble components of the biomass with 1-D 13C and 2-D [1H,1H] correlation (COSY) NMR spectroscopy revealed that the water-soluble components were composed almost entirely of ,-glucans. Agropine, a frequently reported hairy root biomass component, was not detected. Our measurements of the biomass components quantified 83.6 ± 9.3% (w/w) of the biomass. Together with previously reported abundances of indole alkaloids, we accounted for at least 85.9 ± 11.6% (w/w) of the carbon in the biomass, which enabled the precise determination of 12 biomass synthesis fluxes. [source]


Prolinoamino Acids as Tools to Build Bifunctionalized, Stable ,-Turns in Water

CHEMBIOCHEM, Issue 1 2010
Céline Mothes
,-Turn it on: Peptides incorporating cis -3-prolinoamino acids (prolinoleucine or prolinohomotryptophane) and N -methylamino acids (NMePhe/Arg/Lys) have been synthesized to mimic stable ,-turns in water (see figure). These 3-substituted prolines are valuable peptidomimetic tools for synthesizing ,-turns while keeping the side chain of proteinogenic amino acids. [source]


Solid-Phase Synthesis of Peptide and Glycopeptide Thioesters through Side-Chain-Anchoring Strategies

CHEMISTRY - A EUROPEAN JOURNAL, Issue 12 2008
Simon Ficht Dr.
Abstract An efficient new strategy for the synthesis of peptide and glycopeptide thioesters is described. The method relies on the side-chain immobilization of a variety of Fmoc-amino acids, protected at their C-termini, on solid supports. Once anchored, peptides were constructed using solid-phase peptide synthesis according to the Fmoc protocol. After unmasking the C-terminal carboxylate, either thiols or amino acid thioesters were coupled to afford, after cleavage, peptide and glycopeptide thioesters in high yields. Using this method a significant proportion of the proteinogenic amino acids could be incorporated as C-terminal amino acid residues, therefore providing access to a large number of potential targets that can serve as acyl donors in subsequent ligation reactions. The utility of this methodology was exemplified in the synthesis of a 28 amino acid glycopeptide thioester, which was further elaborated to an N-terminal fragment of the glycoprotein erythropoietin (EPO) by native chemical ligation. [source]


The World of , - and , -Peptides Comprised of Homologated Proteinogenic Amino Acids and Other Components

CHEMISTRY & BIODIVERSITY, Issue 8 2004
Dieter Seebach
The origins of our nearly ten-year research program of chemical and biological investigations into peptides based on homologated proteinogenic amino acids are described. The road from the biopolymer poly[ethyl (R)-3-hydroxybutanoate] to the , -peptides was primarily a step from organic synthesis methodology (the preparation of enantiomerically pure compounds (EPCs)) to supramolecular chemistry (higher-order structures maintained through non-covalent interactions). The performing of biochemical and biological tests on the , - and , -peptides, which differ from natural peptides/proteins by a single or two additional CH2 groups per amino acid, then led into bioorganic chemistry and medicinal chemistry. The individual chapters of this review article begin with descriptions of work on , -amino acids, , -peptides, and polymers (Nylon-3) that dates back to the 1960s, even to the times of Emil Fischer, but did not yield insights into structures or biological properties. The numerous, often highly physiologically active, or even toxic, natural products containing ,- and ,-amino acid moieties are then presented. Chapters on the preparation of homologated amino acids with proteinogenic side chains, their coupling to provide the corresponding peptides, both in solution (including thioligation) and on the solid phase, their isolation by preparative HPLC, and their characterization by mass spectrometry (HR-MS and MS sequencing) follow. After that, their structures, predominantly determined by NMR spectroscopy in methanolic solution, are described: helices, pleated sheets, and turns, together with stack-, crankshaft-, paddlewheel-, and staircase-like patterns. The presence of the additional CC bonds in the backbones of the new peptides did not give rise to a chaotic increase in their secondary structures as many protein specialists might have expected: while there are indeed more structure types than are observed in the , -peptide realm , three different helices (10/12 -, 12 -, and 14 -helix) if we include oligomers of trans -2-aminocyclopentanecarboxylic acid, for example , the structures are already observable with chains made up of only four components, and, having now undergone a learning process, we are able to construct them by design. The structures of the shorter , -peptides can also be reliably determined by molecular-dynamics calculations (in solution; GROMOS program package). Unlike in the case of the natural helices, these compounds' folding into secondary structures is not cooperative. In , - and , -peptides, it is possible to introduce heteroatom substituents (such as halogen or OH) onto the backbones or to incorporate heteroatoms (NH, O) directly into the chain, and, thanks to this, it has been possible to study effects unobservable in the world of the , -peptides. Tests with proteolytic enzymes of all types (from mammals, microorganisms, yeasts) and in vivo examination (mice, rats, insects, plants) showed , - and , -peptides to be completely stable towards proteolysis and, as demonstrated for two , -peptides, extraordinarily stable towards metabolism, even when bearing functionalized side chains (such as those of Thr, Tyr, Trp, Lys, or Arg). The , -peptides so far examined also normally display no or only very weak cytotoxic, antiproliferative, antimicrobial, hemolytic, immunogenic, or inflammatory properties either in cell cultures or in vivo. Even biological degradation by microbial colonies of the types found in sewage-treatment plants or in soil is very slow. That there are indeed interactions of ,- and ,-peptides with biological systems, however, can be seen in the following findings: i) organ-specific distribution takes place after intravenous (i.v.) administration in rats, ii) transport through the intestines of rodents has been observed, iii) , -peptides with positively charged side chains (Arg and Lys) settle on cell surfaces, are able to enter into mammalian cells (fibroplasts, keratinocytes, HeLa cells), and migrate into their cell nuclei (and nucleoli), and iv) in one case, it has already been established that a , -peptide derivative can up- and down-regulate gene expression rates. Besides these less sharply definable interactions, it has also been possible to construct , - and , -peptide agonists of naturally occurring peptide hormones, MHC-binding , -peptides, or amphipathic , -peptide inhibitors of membrane-bound proteins in a controlled fashion. Examples include somatostatin mimics and the suppression of cholesterol transport through the intestinal brush-border membrane (by the SR-BI-protein). The results so far obtained from investigations into peptides made up of homologues of the proteinogenic amino acids also represent a contribution to deepening of our knowledge of the natural peptides/proteins, while potential for biomedicinal application of this new class of substances has also been suggested. [source]