Protein Science (protein + science)

Distribution by Scientific Domains


Selected Abstracts


Changes at Protein Science

PROTEIN SCIENCE, Issue 1 2008
Brian W. Matthews
No abstract is available for this article. [source]


Protein Science welcomes new publisher

PROTEIN SCIENCE, Issue 1 2001
Mark Hermodson
No abstract is available for this article. [source]


Cationic and anionic lipid-based nanoparticles in CEC for protein separation

ELECTROPHORESIS, Issue 11 2010
Christian Nilsson
Abstract The development of new separation techniques is an important task in protein science. Herein, we describe how anionic and cationic lipid-based liquid crystalline nanoparticles can be used for protein separation. The potential of the suggested separation methods is demonstrated on green fluorescent protein (GFP) samples for future use on more complex samples. Three different CEC-LIF approaches for protein separation are described. (i) GFP and GFP N212Y, which are equally charged, were separated with high resolution by using anionic nanoparticles suspended in the electrolyte and adsorbed to the capillary wall. (ii) High efficiency (800,000 plates/m) and peak capacity were demonstrated separating GFP samples from Escherichia coli with cationic nanoparticles suspended in the electrolyte and adsorbed to the capillary wall. (iii) Three single amino-acid-substituted GFP variants were separated with high resolution using an approach based on a physical attached double-layer coating of cationic and anionic nanoparticles combined with anionic lipid nanoparticles suspended in the electrolyte. The soft and porous lipid-based nanoparticles were synthesized by a one-step procedure based on the self-assembly of lipids, and were biocompatible with a large surface-to-volume ratio. The methodology is still under development and the optimization of the nanoparticle chemistry and separation conditions can further improve the separation system. In contrast to conventional LC, a new interaction phase is introduced for every analysis, which minimizes carry-over and time-consuming column regeneration. [source]


Interactive graphics return to protein science

PROTEIN SCIENCE, Issue 4 2009
Arthur G. Palmer III
No abstract is available for this article. [source]


Modern analytical ultracentrifugation in protein science: A tutorial review

PROTEIN SCIENCE, Issue 9 2002
Jacob Lebowitz
Abstract Analytical ultracentrifugation (AU) is reemerging as a versatile tool for the study of proteins. Monitoring the sedimentation of macromolecules in the centrifugal field allows their hydrodynamic and thermodynamic characterization in solution, without interaction with any matrix or surface. The combination of new instrumentation and powerful computational software for data analysis has led to major advances in the characterization of proteins and protein complexes. The pace of new advancements makes it difficult for protein scientists to gain sufficient expertise to apply modern AU to their research problems. To address this problem, this review builds from the basic concepts to advanced approaches for the characterization of protein systems, and key computational and internet resources are provided. We will first explore the characterization of proteins by sedimentation velocity (SV). Determination of sedimentation coefficients allows for the modeling of the hydrodynamic shape of proteins and protein complexes. The computational treatment of SV data to resolve sedimenting components has been achieved. Hence, SV can be very useful in the identification of the oligomeric state and the stoichiometry of heterogeneous interactions. The second major part of the review covers sedimentation equilibrium (SE) of proteins, including membrane proteins and glycoproteins. This is the method of choice for molar mass determinations and the study of self-association and heterogeneous interactions, such as protein,protein, protein,nucleic acid, and protein,small molecule binding. [source]


The Human Protein Atlas,a tool for pathology,

THE JOURNAL OF PATHOLOGY, Issue 4 2008
F Pontén
Abstract Tissue-based diagnostics and research is incessantly evolving with the development of new molecular tools. It has long been realized that immunohistochemistry can add an important new level of information on top of morphology and that protein expression patterns in a cancer may yield crucial diagnostic and prognostic information. We have generated an immunohistochemistry-based map of protein expression profiles in normal tissues, cancer and cell lines. For each antibody, altogether 708 spots of tissues and cells are analysed and the resulting images and data are presented as freely available in the Human Protein Atlas (www.proteinatlas.org). The new version 4 of the atlas, including more than 5 million images of immunohistochemically stained tissues and cells, is based on 6122 antibodies, representing 5011 human proteins encoded by approximately 25% of the human genome. The gene-centric database includes a putative classification of proteins in various protein classes, both functional classes, such as kinases or transcription factors and project-related classes, such as candidate genes for cancer or cardiovascular diseases. For each of the internally generated antibodies, the exact antigen sequence is presented, together with a visualization of application-specific validation data, including a protein array assay, western blot analysis, immunohistochemistry and, in most cases, immunofluorescent-based confocal microscopy. The updated version also includes new search algorithms to allow complex queries regarding expression profiles, protein classes and chromosome location. Thus, the presented Human Protein Atlas provides a resource for pathology-based biomedical research, including protein science and biomarker discovery. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Book Review: Introduction to protein science: architecture, function and genomics

BIOESSAYS, Issue 8 2005
Russell Doolittle
No abstract is available for this article. [source]


Computational Design of Four-Helix Bundle Proteins That Bind Nonbiological Cofactors

BIOTECHNOLOGY PROGRESS, Issue 1 2008
Andreas Lehmann
Recent work is discussed concerning the computational design of four-helix bundle proteins that form complexes with nonbiological cofactors. Given that often there are no suitable natural proteins to provide starting points in the creation of such nonbiological systems, computational design is well suited for the design and study of new protein-cofactor complexes. Recent design efforts are presented in the context of prior work on the de novo design and engineering of porphyrin-binding four-helix bundle proteins and current developments in nonlinear optical materials. Such protein-nonbiological cofactor complexes stand to enable new applications in protein science and materials research. [source]


Rapid Matrix-Assisted Refolding of Histidine-Tagged Proteins

CHEMBIOCHEM, Issue 5 2009
Tetyana Dashivets
Abstract Matrix refolded: The formation of inclusion bodies, which are amorphous aggregates of misfolded insoluble protein, during recombinant protein expression, is one of the biggest bottlenecks in protein science. We report a stepwise, rational optimization procedure for refolding of insoluble proteins (see scheme). In comparison to refolding in-solution, this parallelized, matrix-assisted approach allows the refolding of various proteins in a fast and efficient manner. The formation of inclusion bodies (IBs),amorphous aggregates of misfolded insoluble protein,during recombinant protein expression, is still one of the biggest bottlenecks in protein science. We have developed and analyzed a rapid parallel approach for matrix-assisted refolding of recombinant His6 -tagged proteins. Efficiencies of matrix-assisted refolding were screened in a 96-well format. The developed methodology allowed the efficient refolding of five different test proteins, including monomeric and oligomeric proteins. Compared to refolding in-solution, the matrix-assisted refolding strategy proved equal or better for all five proteins tested. Interestingly, specifically oligomeric proteins displayed significantly higher levels of refolding compared to refolding in-solution. Mechanistically, matrix-assisted folding seems to differ from folding in-solution, as the reaction proceeds more rapidly and shows a remarkably different concentration dependence,it allows refolding at up to 1000-fold higher protein concentration than folding in-solution. [source]