Protein S6 Kinase (protein + s6_kinase)

Distribution by Scientific Domains

Kinds of Protein S6 Kinase

  • ribosomal protein s6 kinase


  • Selected Abstracts


    Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes

    FEBS JOURNAL, Issue 15 2002
    Ulrike Krause
    Certain amino acids, like glutamine and leucine, induce an anabolic response in liver. They activate p70 ribosomal protein S6 kinase (p70S6K) and acetyl-CoA carboxylase (ACC) involved in protein and fatty acids synthesis, respectively. In contrast, the AMP-activated protein kinase (AMPK), which senses the energy state of the cell and becomes activated under metabolic stress, inactivates by phosphorylation key enzymes in biosynthetic pathways thereby conserving ATP. In this paper, we studied the effect of AMPK activation and of protein phosphatase inhibitors, on the amino-acid-induced activation of p70S6K and ACC in hepatocytes in suspension. AMPK was activated under anoxic conditions or by incubation with 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAr) or oligomycin, an inhibitor of mitochondrial oxidative phosphorylation. Incubation of hepatocytes with amino acids activated p70S6K via multiple phosphorylation. It also activated ACC by a phosphatase-dependent mechanism but did not modify AMPK activation. Conversely, the amino-acid-induced activation of both ACC and p70S6K was blocked or reversed when AMPK was activated. This AMPK activation increased Ser79 phosphorylation in ACC but decreased Thr389 phosphorylation in p70S6K. Protein phosphatase inhibitors prevented p70S6K activation when added prior to the incubation with amino acids, whereas they enhanced p70S6K activation when added after the preincubation with amino acids. It is concluded that (a) AMPK blocks amino-acid-induced activation of ACC and p70S6K, directly by phosphorylating Ser79 in ACC, and indirectly by inhibiting p70S6K phosphorylation, and (b) both activation and inhibition of protein phosphatases are involved in the activation of p70S6K by amino acids. p70S6K adds to an increasing list of targets of AMPK in agreement with the inhibition of energy-consuming biosynthetic pathways. [source]


    Protein kinase B modulates the sensitivity of human neuroblastoma cells to insulin-like growth factor receptor inhibition

    INTERNATIONAL JOURNAL OF CANCER, Issue 11 2006
    Ana S. Guerreiro
    Abstract The potential of the novel insulin-like growth factor receptor (IGF-IR) inhibitor NVP-AEW541 as an antiproliferative agent in human neuroblastoma was investigated. Proliferation of a panel of neuroblastoma cell lines was inhibited by NVP-AEW541 with IC50 values ranging from 0.15 to 5 ,M. Experiments using an IGF-IR neutralizing antibody confirmed that the IGF-IR was essential to support growth of neuroblastoma cell lines. The expression levels of the IGF-IR in individual neuroblastoma cell lines did not correlate with the sensitivities to NVP-AEW541, while coexpression of the IGF-IR and the insulin receptor (IR) correlated with lower sensitivity to the inhibitor in some cell lines. Intriguingly, high levels of activation of Akt/protein kinase B (PKB) and phosphorylation of the ribosomal S6 protein were observed in neuroblastoma cell lines with decreased sensitivities to NVP-AEW541. Inhibition of Akt/PKB activity restored the sensitivity of neuroblastoma cells to the IGF-IR inhibitor. Transfection of neuroblastoma cells with activated Akt or ribosomal protein S6 kinase (S6K) decreased the sensitivity of the cells to NVP-AEW541. IGF-I-stimulated proliferation of neuroblastoma cell lines was completely blocked by NVP-AEW541, or by a combination of an inhibitor of phosphoinositide 3-kinase and rapamycin. In addition to its antiproliferative effects, NVP-AEW541 sensitized neuroblastoma cells to cisplatin-induced apoptosis. Together, our data demonstrate that NVP-AEW541 in combination with Akt/PKB inhibitors or chemotherapeutic agents may represent a novel approach to target human neuroblastoma cell proliferation. © 2006 Wiley-Liss, Inc. [source]


    TUSC4/NPRL2, a novel PDK1-interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signaling

    CANCER SCIENCE, Issue 9 2008
    Atsuo Kurata
    3-Phosphoinositide,dependent protein kinase-1 (PDK1) is a key regulator of cell proliferation and survival signal transduction. PDK1 is known to be constitutively active and is further activated by Src-mediated phosphorylation at the tyrosine-9, -373, and -376 residues. To identify novel regulators of PDK1, we performed E. coli -based two-hybrid screening and revealed that tumor suppressor candidate 4 (TUSC4), also known as nitrogen permease regulator-like 2 (NPRL2), formed a complex with PDK1 and suppressed Src-dependent tyrosine phosphorylation and activation of PDK1 in vitro and in cells. The NH2 -terminal 133 amino acid residues of TUSC4 were involved in binding to PDK1. The deletion mutant of TUSC4 that lacked the NH2 -terminal domain showed no inhibitory effects on PDK1 tyrosine phosphorylation or activation. Thus, complex formation is indispensable for TUSC4-mediated PDK1 inactivation. The siRNA-mediated down-regulation of TUSC4 induced cell proliferation, while ectopic TUSC4 expression inactivated the PDK1 downstream signaling pathway, including Akt and p70 ribosomal protein S6 kinase, and increased cancer cell sensitivity to several anticancer drugs. Our results suggest that TUSC4/NPRL2, a novel PDK1-interacting protein, plays a role in regulating the Src/PDK1 signaling pathway and cell sensitivity to multiple cancer chemotherapeutic drugs. (Cancer Sci 2008; 99: 1827,1834) [source]