Home About us Contact | |||
Protein Reductase (protein + reductase)
Kinds of Protein Reductase Selected AbstractsX-ray crystallographic analysis of the complexes of enoyl acyl carrier protein reductase of Plasmodium falciparum with triclosan variants to elucidate the importance of different functional groups in enzyme inhibitionIUBMB LIFE, Issue 6 2010Koustav Maity Abstract Triclosan, a well-known inhibitor of Enoyl Acyl Carrier Protein Reductase (ENR) from several pathogenic organisms, is a promising lead compound to design effective drugs. We have solved the X-ray crystal structures of Plasmodium falciparum ENR in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations. The structures revealed that 4 and 2, substituted compounds have more interactions with the protein, cofactor, and solvents when compared with triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2, position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water-based inhibitor design. 2, and 4, unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensate for the lost interactions due to the unsubstitution at 2, and 4,. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2, and 4, positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors. © 2010 IUBMB IUBMB Life, 467,476, 2010 [source] ChemInform Abstract: 1,4-Disubstituted Imidazoles Are Potential Antibacterial Agents Functioning as Inhibitors of Enoyl Acyl Carrier Protein Reductase (FabI).CHEMINFORM, Issue 45 2001Dirk A. Heerding Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] X-ray crystallographic analysis of the complexes of enoyl acyl carrier protein reductase of Plasmodium falciparum with triclosan variants to elucidate the importance of different functional groups in enzyme inhibitionIUBMB LIFE, Issue 6 2010Koustav Maity Abstract Triclosan, a well-known inhibitor of Enoyl Acyl Carrier Protein Reductase (ENR) from several pathogenic organisms, is a promising lead compound to design effective drugs. We have solved the X-ray crystal structures of Plasmodium falciparum ENR in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations. The structures revealed that 4 and 2, substituted compounds have more interactions with the protein, cofactor, and solvents when compared with triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2, position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water-based inhibitor design. 2, and 4, unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensate for the lost interactions due to the unsubstitution at 2, and 4,. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2, and 4, positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors. © 2010 IUBMB IUBMB Life, 467,476, 2010 [source] Crystal structure of enoyl,acyl carrier protein reductase (FabK) from Streptococcus pneumoniae reveals the binding mode of an inhibitorPROTEIN SCIENCE, Issue 4 2008Jun Saito Abstract Enoyl,acyl carrier protein (ACP) reductases are critical for bacterial type II fatty acid biosynthesis and thus are attractive targets for developing novel antibiotics. We determined the crystal structure of enoyl,ACP reductase (FabK) from Streptococcus pneumoniae at 1.7 Å resolution. There was one dimer per asymmetric unit. Each subunit formed a triose phosphate isomerase (TIM) barrel structure, and flavin mononucleotide (FMN) was bound as a cofactor in the active site. The overall structure was similar to the enoyl,ACP reductase (ER) of fungal fatty acid synthase and to 2-nitropropane dioxygenase (2-ND) from Pseudomonas aeruginosa, although there were some differences among these structures. We determined the crystal structure of FabK in complex with a phenylimidazole derivative inhibitor to envision the binding site interactions. The crystal structure reveals that the inhibitor binds to a hydrophobic pocket in the active site of FabK, and this is accompanied by induced-fit movements of two loop regions. The thiazole ring and part of the ureido moiety of the inhibitor are involved in a face-to-face ,,, stacking interaction with the isoalloxazine ring of FMN. The side-chain conformation of the proposed catalytic residue, His144, changes upon complex formation. Lineweaver,Burk plots indicate that the inhibitor binds competitively with respect to NADH, and uncompetitively with respect to crotonoyl coenzyme A. We propose that the primary basis of the inhibitory activity is competition with NADH for binding to FabK, which is the first step of the two-step ping-pong catalytic mechanism. [source] Determination of triclosan metabolites by using in-source fragmentation from high-performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 13 2010Jian-lin Wu Triclosan is a widely used broad-spectrum antibacterial agent that acts by specifically inhibiting enoyl,acyl carrier protein reductase. An in vitro metabolic study of triclosan was performed by using Sprague-Dawley (SD) rat liver S9 and microsome, while the invivo metabolism was investigated on SD rats. Twelve metabolites were identified by using in-source fragmentation from high-performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry (HPLC/APCI-ITMS) analysis. Compared to electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) that gave little fragmentation for triclosan and its metabolites, the in-source fragmentation under APCI provided intensive fragmentations for the structural identifications. The invitro metabolic rate of triclosan was quantitatively determined by using HPLC/ESI-ITMS with the monitoring of the selected triclosan molecular ion. The metabolism results indicated that glucuronidation and sulfonation were the major pathways of phase II metabolism and the hydroxylated products were the major phase I metabolites. Moreover, glucose, mercapturic acid and cysteine conjugates of triclosan were also observed in the urine samples of rats orally administrated with triclosan. Copyright © 2010 John Wiley & Sons, Ltd. [source] Crystallization and preliminary X-ray analysis of enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniaeACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 6 2006Jun Saito The enoyl-acyl carrier protein (ACP) reductase from Streptococcus pneumoniae (FabK; EC 1.3.1.9) is responsible for catalyzing the final step in each elongation cycle of fatty-acid biosynthesis. Selenomethionine-substituted FabK was purified and crystallized by the hanging-drop vapour-diffusion method at 277,K. The crystal belongs to space group P21, with unit-cell parameters a = 50.26, b = 126.70, c = 53.63,Å, , = 112.46°. Diffraction data were collected to 2.00,Å resolution using synchrotron beamline BL32B2 at SPring-8. Two molecules were estimated to be present in the asymmetric unit, with a solvent content of 45.1%. [source] |