Home About us Contact | |||
Protein Kinase C Activator (protein + kinase_c_activator)
Selected AbstractsProtein Kinase C Activators as Synaptogenic and Memory TherapeuticsARCHIV DER PHARMAZIE, Issue 12 2009Miao-Kun Sun Abstract The last decade has witnessed a rapid progress in understanding of the molecular cascades that may underlie memory and memory disorders. Among the critical players, activity of protein kinase C (PKC) isoforms is essential for many types of learning and memory and their dysfunction, and is critical in memory disorders. PKC inhibition and functional deficits lead to an impairment of various types of learning and memory, consistent with the observations that neurotoxic amyloid inhibits PKC activity and that transgenic animal models with PKC, deficit exhibit impaired capacity in cognition. In addition, PKC isozymes play a regulatory role in amyloid production and accumulation. Restoration of the impaired PKC signal pathway pharmacologically results in an enhanced memory capacity and synaptic remodeling / repair and synaptogenesis, and, therefore, represents a potentially important strategy for the treatment of memory disorders, including Alzheimer's dementia. The PKC activators, especially those that are isozyme-specific, are a new class of drug candidates that may be developed as future memory therapeutics. [source] Nonylphenol-induced cytosolic Ca2+ elevation and death in renal tubular cellsDRUG DEVELOPMENT RESEARCH, Issue 5 2009Jeng-Yu Tsai Abstract Nonylphenol is an environmental endocrine disrupter. The effect of nonylphenol on intracellular free Ca2+ levels ([Ca2+]i) and viability in Madin-Darby canine kidney (MDCK) cells was explored. Nonylphenol increased [Ca2+]i in a concentration-dependent manner (EC50,0.8,,M). Nonylphenol-induced Mn2+ entry demonstrated Ca2+ influx and removal of extracellular Ca2+ partly decreased the [Ca2+]i rise. The [Ca2+]i rise was inhibited by the protein kinase C activator, phorbol 13-myristate acetate (PMA) but not by L-type Ca2+ channel blockers. In Ca2+ -free medium, nonylphenol-induced [Ca2+]i rise was partly inhibited by pretreatment with 1,,M thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). Conversely, nonylphenol pretreatment abolished thapsigargin-induced Ca2+ release. Nonylphenol-induced Ca2+ release was unaltered by inhibition of phospholipase C. At concentrations of 5,100,,M, nonylphenol killed cells in a concentration-dependent manner. The cytotoxic effect of 100,,M nonylphenol was not affected by preventing [Ca2+]i rises with BAPTA/AM. Collectively, this study shows that nonylphenol induced [Ca2+]i increase in MDCK cells via evoking Ca2+ entry through protein kinase C-regulated Ca2+ channels, and releasing Ca2+ from endoplasmic reticulum and other stores in a phospholipase C-independent manner. Nonylphenol also killed cells in a Ca2+ -independent fashion. Drug Dev Res, 2009. © 2009 Wiley-Liss, Inc. [source] Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brainGLIA, Issue 4 2009Ariane Sharif Abstract Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron,glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of erbB signaling in human astrocytes. We showed that human cortical astrocytes express erbB1, erbB2, and erbB3, whereas human hypothalamic astrocytes express erbB1, erbB2, and erbB4 receptors. Ligand-dependent activation of different erbB receptor heterodimeric complexes in these two populations of astrocytes translated into different morphological and proliferative responses. Although morphological plasticity was more pronounced in hypothalamic astrocytes than in cortical astrocytes, the former showed a lower mitogenic potential. Decreasing erbB4 expression via siRNA-mediated gene knockdown revealed that erbB4 constitutively restrains basal proliferative activity in hypothalamic astrocytes. We further show that treatment of human astrocytes with a protein kinase C activator results in rapid tyrosine phosphorylation of erbB receptors that involves cleavage of endogenous membrane bound erbB ligands by metalloproteinases. Together, these results indicate that erbB signaling in primary human brain astrocytes is functional, region-specific, and can be activated in a paracrine and/or autocrine manner. In addition, by revealing that some aspects of astroglial erbB signaling are different between human and rodents, our results provide a molecular framework to explore the potential involvement of astroglial erbB signaling deregulation in human brain disorders. © 2008 Wiley-Liss, Inc. [source] Inhibitory Effects of Ethanol on Rat Mesangial Cell Proliferation via Protein Kinase C PathwayALCOHOLISM, Issue 3 2002Kayoko Segawa A large body of evidence has shown that ethanol inhibits the cell growth and cell proliferation in a variety of cell types. However, it has not been studied whether ethanol inhibits the proliferation of mesangial cells (MC) in the kidney. We examined the effects of ethanol on cell proliferation in cultured rat MC. Treatment with ethanol (10,200 mM) for 48 hr inhibited [3H]thymidine incorporation into MC in a concentration-dependent manner. The same concentrations of ethanol also inhibited the increase in cell number of MC. GF109203X and chelerythrine chloride, inhibitors for protein kinase C, eliminated the inhibitory effects of ethanol; and protein kinase C activator, PMA, mimicked the effects of ethanol. In contrast, neither the protein kinase A inhibitor H-89 nor the protein kinase G inhibitor KT5823 had any effect. These findings suggest that ethanol has inhibitory effects on the proliferation of MC, probably via activation of the protein kinase C pathway. [source] |