Protein Identification Technology (protein + identification_technology)

Distribution by Scientific Domains

Kinds of Protein Identification Technology

  • multidimensional protein identification technology


  • Selected Abstracts


    Proteomic comparison of two fractions derived from the transsynaptic scaffold

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2005
    Greg R. Phillips
    Abstract A fraction derived from presynaptic specializations (presynaptic particle fraction; PPF) can be separated from postsynaptic densities (PSD) by adjusting the pH of Triton X-100 (TX-100) extraction of isolated transsynaptic scaffolds. Solubilization of the PPF corresponds to disruption of the presynaptic specialization. We show that the PPF is insoluble to repeated TX-100 extraction at pH 6.0 but becomes soluble in detergent at pH 8.0. By immunolocalization, we find that the major proteins of the PPF, clathrin and dynamin, are concentrated in the presynaptic compartment. By using multidimensional protein identification technology, we compared the protein compositions of the PPF and the PSD fraction. We identified a total of 341 proteins, 50 of which were uniquely found in the PPF, 231 in the PSD fraction, and 60 in both fractions. Comparison of the two fractions revealed a relatively low proportion of actin and associated proteins and a high proportion of vesicle or intracellular compartment proteins in the PPF. We conclude that the PPF consists of presynaptic proteins not connected to the actin-based synaptic framework; its insolubility in pH 6 and solubility in pH 8 buffered detergent suggests that clathrin might be an anchorage scaffold for many proteins in the PPF. © 2005 Wiley-Liss, Inc. [source]


    Analysis of nuclear proteome in C57 mouse liver tissue by a nano-flow 2-D-LC,ESI-MS/MS approach

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 17 2006
    Jie Zhang
    Abstract The analysis of whole cell or tissue extracts is too complex for current protein identification technology and not suitable for the study of proteins with low copy levels. To concentrate and enrich low abundance proteins, organelle proteomics is a promising strategy. This approach can not only reduce the protein sample complexity but also provide information about protein location in cells, organs, or tissues under analysis. Nano-flow two-dimensional strong-cation exchange chromatography (SCX),RPLC,ESI-MS/MS is an ideal platform for analyzing organelle extracts because of its advantages of sample non-bias, low amounts of sample required, powerful separation capability, and high detection sensitivity. In this study, we apply nano-scale multidimensional protein identification technology to the analysis of C57 mouse liver nuclear proteins. Organelle isolation has been optimized to obtain highly pure nuclei. Evaluation of nucleus integrity and purity has been performed to demonstrate the effectiveness of the optimized isolation procedure. The extracted nuclear proteins were identified by five independent nano-flow on-line SCX,RPLC,ESI-MS/MS analyses to improve the proteome coverage. Finally, a total of 462 proteins were identified. Corresponding analyses of protein molecular mass and pI distribution and biological function categorization have been undertaken to further validate our identification strategy. [source]


    Oncoproteomics of hepatocellular carcinoma: from cancer markers' discovery to functional pathways

    LIVER INTERNATIONAL, Issue 8 2007
    Stella Sun
    Abstract Hepatocellular carcinoma (HCC) is a heterogeneous cancer with no promising treatment and remains one of the most prevailing and lethal malignancies in the world. Researchers in many biological areas now routinely identify and characterize protein markers by a mass spectrometry-based proteomic approach, a method that has been commonly used to discover diagnostic biomarkers for cancer detection. The proteomic research platforms span from the classical two-dimensional polyacrylamide gel electrophoresis (2-DE) to the latest Protein Chip or array technology, which are often integrated with the MALDI (matrix-assisted laser-desorption ionization), SELDI (surface-enhanced laser desorption/ionization) or tandem mass spectrometry (MS/MS). New advances on quantitative proteomic analysis (e.g. SILAC, ICAT, and ITRAQ) and multidimensional protein identification technology (MudPIT) have greatly enhanced the capability of proteomic methods to study the expressions, modifications and functions of protein markers. The present article reviews the latest proteomic development and discovery of biomarkers in HCC that may provide insights into the underlying mechanisms of hepatocarcinogenesis and the readiness of biomarkers for clinical uses. [source]


    Early events of Bacillus anthracis germination identified by time-course quantitative proteomics

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 19 2006
    Pratik Jagtap
    Abstract Germination of Bacillus anthracis spores involves rehydration of the spore interior and rapid degradation of several of the protective layers, including the spore coat. Here, we examine the temporal changes that occur during B. anthracis spore germination using an isobaric tagging system. Over the course of 17,min from the onset of germination, the levels of at least 19 spore proteins significantly decrease. Included are acid-soluble proteins, several known and predicted coat proteins, and proteins of unknown function. Over half of these proteins are small (less than 100 amino acids) and would have been undetectable by conventional gel-based analysis. We also identified 20 proteins, whose levels modestly increased at the later time points when metabolism has likely resumed. Taken together, our data show that isobaric labeling of complex mixtures is particularly effective for temporal studies. Furthermore, we describe a rigorous statistical approach to define relevant changes that takes into account the nature of data obtained from multidimensional protein identification technology coupled with the use of isobaric tags. This study provides an expanded list of the proteins that may be involved in germination of the B. anthracis spore and their relative levels during germination. [source]