Protein Expression Profiling (protein + expression_profiling)

Distribution by Scientific Domains


Selected Abstracts


Gene and Protein Expression Profiling of the Microvascular Compartment in Experimental Autoimmune Encephalomyelitis in C57BI/6 and SJL Mice

BRAIN PATHOLOGY, Issue 1 2005
Carsten Alt
Dysfunction of the blood-brain barrier (BBB) is a hallmark of inflammatory diseases of the central nervous system (CNS) such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). The molecular mechanisms leading to BBB breakdown are not well understood. In order to find molecules involved in this process, we used oligonucleotide microarrays and proteomics to analyze gene and protein expression of the microvascular compartment isolated from brains of C57BI/6 and SJL/N mice afflicted with EAE and the microvascular compartment isolated from healthy controls. Out of the 6500 known genes and expressed sequence tags (ESTs) studied, expression of 288 genes was found to be changed. Of these genes 128 were altered in the microvascular compartment in both EAE models. Six proteins were identified to be present at altered levels. In addition to the expected increased expression of genes coding for molecules involved in leukocyte recruitment, genes not yet ascribed to EAE pathogenesis were identified. Thus, proteomics and gene array screens of the microvascular compartment are valid approaches, that can be used to define novel candidate molecules involved in EAE pathogenesis at the level of the BBB. [source]


Classification of cancer types by measuring variants of host response proteins using SELDI serum assays

INTERNATIONAL JOURNAL OF CANCER, Issue 5 2005
Eric T. Fung
Abstract Protein expression profiling has been increasingly used to discover and characterize biomarkers that can be used for diagnostic, prognostic or therapeutic purposes. Most proteomic studies published to date have identified relatively abundant host response proteins as candidate biomarkers, which are often dismissed because of an apparent lack of specificity. We demonstrate that 2 host response proteins previously identified as candidate markers for early stage ovarian cancer, transthyretin and inter-alpha trypsin inhibitor heavy chain 4 (ITIH4), are posttranslationally modified. These modifications include proteolytic truncation, cysteinylation and glutathionylation. Assays using Surface Enhanced Laser Desorption/Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS) may provide a means to confer specificity to these proteins because of their ability to detect and quantitate multiple posttranslationally modified forms of these proteins in a single assay. Quantitative measurements of these modifications using chromatographic and antibody-based ProteinChip® array assays reveal that these posttranslational modifications occur to different extents in different cancers and that multivariate analysis permits the derivation of algorithms to improve the classification of these cancers. We have termed this process host response protein amplification cascade (HRPAC), since the process of synthesis, posttranslational modification and metabolism of host response proteins amplifies the signal of potentially low-abundant biologically active disease markers such as enzymes. © 2005 Wiley-Liss, Inc. [source]


Protein expression profiling of glutathione S -transferase pi null mice as a strategy to identify potential markers of resistance to paracetamol-induced toxicity in the liver

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 2 2003
Neil R. Kitteringham
Abstract GST pi (GSTP) is a member of the glutathione S -transferase (EC 2.5.1.18; GST) family of enzymes that catalyse the conjugation of electrophilic species with reduced glutathione and thus play an important role in the detoxification of electrophilic metabolites. Deletion of GSTP in mice has previously been shown to lead to enhanced susceptibility to chemical-induced skin carcinoma, consistent with its known metabolic functions. A decreased susceptibility to paracetamol hepatotoxicity has also been observed, which has not been fully explained. One possibility is that deletion of the GSTP gene locus results in compensatory changes in other proteins involved in defence against chemical stress. We have therefore used complementary protein expression profiling techniques to perform a systematic comparison of the protein expression profiles of livers from GSTP null and wild-type mice. Analysis of liver proteins by two-dimensional electrophoresis confirmed the absence of GSTP in null mice whereas GSTP represented 3,5% of soluble protein in livers from wild-type animals. There was a high degree of quantitative and qualitative similarity in other liver proteins between GSTP null and wild-type mice. There was no evidence that the absence of GSTP in null animals resulted in enhanced expression of other GST isoforms in the null mice (GST alpha, 1.48%, GST mu, 1.68% of resolved proteins) compared with the wild-type animals (GST alpha, 1.50%, GST mu, 1.40%). In contrast, some members of the thiol specific antioxidant family of proteins, notably antioxidant protein 2 and thioredoxin peroxidases, were expressed at a higher level in the GSTP null mouse livers. These changes presumably reflect the recently described role of GSTP in cell signalling and may underlie the protection against paracetamol toxicity seen in these animals. [source]


Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 10 2010
Péter Horvatovich
Abstract Multidimensional chromatography coupled to mass spectrometry (LCn -MS) provides more separation power and an extended measured dynamic concentration range to analyse complex proteomics samples than one dimensional liquid chromatography coupled to mass spectrometry (1D-LC-MS). This review gives an overview of the most important aspects of LCn -MS with respect to optimizing peak capacity and evaluate orthogonality. We review recent developments in LCn -MS to analyse proteomics samples from the analyst point of view and give an overview over methods and future developments to process LCn -MS data for comprehensive differential protein expression profiling. Examples from our research, such as combining protein fractionation using high temperature reverse phase (RP) columns followed by analysis of the trypsin-digested fractions by RP LC-MS, serve to highlight possibilities and shortcomings of present-day approaches. Other LCn -MS systems that have been used to analyse highly complex shotgun proteomic samples, such as the combination of RP columns using low and high pH eluents or the combination of hydrophilic interaction liquid chromatography (HILIC) with RP-MS is discussed in detail. [source]


Pathway analysis of dilated cardiomyopathy using global proteomic profiling and enrichment maps

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 6 2010
Ruth Isserlin
Abstract Global protein expression profiling can potentially uncover perturbations associated with common forms of heart disease. We have used shotgun MS/MS to monitor the state of biological systems in cardiac tissue correlating with disease onset, cardiac insufficiency and progression to heart failure in a time-course mouse model of dilated cardiomyopathy. However, interpreting the functional significance of the hundreds of differentially expressed proteins has been challenging. Here, we utilize improved enrichment statistical methods and an extensive collection of functionally related gene sets, gaining a more comprehensive understanding of the progressive alterations associated with functional decline in dilated cardiomyopathy. We visualize the enrichment results as an Enrichment Map, where significant gene sets are grouped based on annotation similarity. This approach vastly simplifies the interpretation of the large number of enriched gene sets found. For pathways of specific interest, such as Apoptosis and the MAPK (mitogen-activated protein kinase) cascade, we performed a more detailed analysis of the underlying signaling network, including experimental validation of expression patterns. [source]


Proteomic profiling reveals comprehensive insights into adrenergic receptor-mediated hypertrophy in neonatal rat cardiomyocytes

PROTEOMICS - CLINICAL APPLICATIONS, Issue 12 2009
Zijian Li
Abstract Myocardial adrenergic receptors (ARs) play important roles in cardiac hypertrophy. However, the detailed molecular mechanism of AR-mediated cardiac hypertrophy remains elusive to date. To gain full insight into how ARs are involved in the regulation of cardiac hypertrophy, protein expression profiling was performed with comparative proteomics approach on neonatal rat cardiomyocytes. Forty-six proteins were identified as differentially expressed in hypertrophic cardiomyocytes induced by AR stimulation. To better understand the biological significance of the obtained proteomic data, we utilized the ingenuity pathway analysis tool to construct biological networks and analyze function and pathways that might associate with AR-mediated cardiac hypertrophy. Pathway analysis strongly suggested that ROS may be involved in the development of AR-mediated cardiac hypertrophy, which was then confirmed by further experimentation. The results showed that a marked increase in ROS production was detected in AR-mediated cardiac hypertrophy and blocking of ROS production significantly inhibited AR-mediated cardiac hypertrophy. We further proved that the ROS production was through NADPH oxidase or the mitochondrial electron transport chain and this ROS accumulation resulted in activation of extracellular signal-regulated kinase 1/2 leading to AR-mediated cardiac hypertrophy. These experimental results support the hypothesis, from the ingenuity pathway analysis, that AR-mediated cardiac hypertrophy is associated with the dysregulation of a complicated oxidative stress-regulatory network. In conclusion, our results provide a basis for understanding the detailed molecular mechanisms of AR-mediated cardiac hypertrophy. [source]


Differential Capture of Serum Proteins for Expression Profiling and Biomarker Discovery in Pre- and Posttreatment Head and Neck Cancer Samples,

THE LARYNGOSCOPE, Issue 1 2008
Gary L. Freed MD
Abstract Introduction: A long-term goal of our group is to develop proteomic-based approaches to the detection and use of protein biomarkers for improvement in diagnosis, prognosis, and tailoring of treatment for head and neck squamous cell cancer (HNSCC). We have previously demonstrated that protein expression profiling of serum can identify multiple protein biomarker events that can serve as molecular fingerprints for the assessment of HNSCC disease state and prognosis. Methods: An automated Bruker Daltonics (Billerica, MA) ClinProt matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer was used. Magnetic chemical affinity beads were used to differentially capture serum proteins prior to MALDI-TOF analysis. The resulting spectra were analyzed using postprocessing software and a pattern recognition genetic algorithm (ClinProt 2.0). An HNSCC cohort of 48 sera samples from 24 patients consisting of matched pretreatment and 6 to 12 month posttreatment samples was used for further analysis. Low-mass differentially expressed peptides were identified using MALDI-TOF/TOF. Results: In the working mass range of 1,000 to 10,000 m/z, approximately 200 peaks were resolved for ionic bead capture approaches. For spectra generated from weak cation bead capture, a k-nearest neighbor genetic algorithm was able to correctly classify 94% normal from pretreatment HNSCC samples, 80% of pretreatment from posttreatment samples, and 87% of normal from posttreatment samples. These peptides were then analyzed by MALDI-TOF/TOF mass spectometry for sequence identification directly from serum processed with the same magnetic bead chemistry or alternatively after gel electrophoresis separation of the captured proteins. We were able to compare this with similar studies using surface-enhanced laser desorption ionization (SELDI)-TOF to show this method as a valid tool for this process with some improvement in the identification of our groups. Conclusions: This initial study using new high-resolution MALDI-TOF mass spectrometry coupled with bead fractionation is suitable for automated protein profiling and has the capability to simultaneously identify potential biomarker proteins for HNSCC. In addition, we were able to show improvement with the MALDI-TOF in identifying groups with HNSCC when compared with our prior data using SELDI-TOF. Using this MALDI-TOF technology as a discovery platform, we anticipate generating biomarker panels for use in more accurate prediction of prognosis and treatment efficacies for HNSCC. [source]


Identification and Functional Characterization of microRNAs Involved in the Malignant Progression of Gliomas

BRAIN PATHOLOGY, Issue 3 2010
Bastian Malzkorn
Abstract Diffuse astrocytoma of World Health Organization (WHO) grade II has an inherent tendency to spontaneously progress to anaplastic astrocytoma WHO grade III or secondary glioblastoma WHO grade IV. We explored the role of microRNAs (miRNAs) in glioma progression by investigating the expression profiles of 157 miRNAs in four patients with primary WHO grade II gliomas that spontaneously progressed to WHO grade IV secondary glioblastomas. Thereby, we identified 12 miRNAs (miR-9, miR-15a, miR-16, miR-17, miR-19a, miR-20a, miR-21, miR-25, miR-28, miR-130b, miR-140 and miR-210) showing increased expression, and two miRNAs (miR-184 and miR-328) showing reduced expression upon progression. Validation experiments on independent series of primary low-grade and secondary high-grade astrocytomas confirmed miR-17 and miR-184 as promising candidates, which were selected for functional analyses. These studies revealed miRNA-specific influences on the viability, proliferation, apoptosis and invasive growth properties of A172 and T98G glioma cells in vitro. Using mRNA and protein expression profiling, we identified distinct sets of transcripts and proteins that were differentially expressed after inhibition of miR-17 or overexpression of miR-184 in glioma cells. Taken together, our results support an important role of altered miRNA expression in gliomas, and suggest miR-17 and miR-184 as interesting candidates contributing to glioma progression. [source]


Proteomics meets microbiology: technical advances in the global mapping of protein expression and function

CELLULAR MICROBIOLOGY, Issue 8 2005
Carolyn I. Phillips
Summary The availability of complete genome sequences for a large number of pathogenic organisms has opened the door for large-scale proteomic studies to dissect both protein expression/regulation and function. This review highlights key proteomic methods including two-dimensional gel electrophoresis, reference mapping, protein expression profiling and recent advances in gel-free separation techniques that have made a significant impact on the resolution of complex proteomes. In addition, we highlight recent developments in the field of chemical proteomics, a branch of proteomics aimed at functionally profiling a proteome. These techniques include the development of activity-based probes and activity-based protein profiling methods as well as the use of synthetic small molecule libraries to screen for pharmacological tools to perturb basic biological processes. This review will focus on the applications of these technologies to the field of microbiology. [source]