Proteins Bid (protein + bid)

Distribution by Scientific Domains


Selected Abstracts


Mapping the Specific Cytoprotective Interaction of Humanin with the Pro-apoptotic Protein Bid

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2007
Jungyuen Choi
Humanin is a short endogenous peptide, which can provide protection from cell death through its association with various receptors, including the pro-apoptotic Bcl-2 family proteins Bid, Bim, and Bax. By using NMR chemical shift mapping experiments, we demonstrate that the interaction between Humanin-derived peptides and Bid is specific, and we localize the binding site to a region on the surface of Bid, which includes residues from the conserved helical BH3 domain of the protein. The BH3 domain mediates the association of Bid with other Bcl-2 family members and is essential for the protein's cytotoxic activity. The data suggest that Humanin exerts its cytoprotective activity by engaging the Bid BH3 domain; this would hinder the association of Bid with other Bcl-2 family proteins, thereby mitigating its toxicity. The identification of a Humanin-specific binding site on the surface of Bid reinforces its importance as a direct modulator of programmed cell death, and suggests a strategy for the design of cytoprotective peptide inhibitors of Bid. [source]


TBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 1 2007
D. Du Pasquier
Abstract Xenopus is a well proven model for a wide variety of developmental studies, including cell lineage. Cell lineage in Xenopus has largely been addressed by injection of tracer molecules or by micro-dissection elimination of blastomeres. Here we describe a genetic method for cell ablation based on the use of tBid, a direct activator of the mitochondrial apoptotic pathway. In mammalian cells, cross-talk between the main apoptotic pathways (the mitochondrial and the death domain protein pathways) involve the pro-death protein BID, the active form of which, tBID, results from protease truncation and translocation to mitochondria. In transgenic Xenopus, restricting tBID expression to the lens-forming cells enables the specific ablation of the lens without affecting the development of other eye structures. Thus, overexpression of tBid can be used in vivo as a tool to eliminate a defined cell population by apoptosis in a developing organism and to evaluate the degree of autonomy or the inductive effects of a specific tissue during embryonic development. genesis 45:1,10, 2007. © 2006 Wiley-Liss, Inc. [source]


BH3-only proteins Bid and BimEL are differentially involved in neuronal dysfunction in mouse models of Huntington's disease

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2007
Juan M. García-Martínez
Abstract Apoptosis, a cell death mechanism regulated by Bcl-2 family members, has been proposed as one of the mechanisms leading to neuronal loss in Huntington's disease (HD). Here we examined the regulation of Bcl-2 family proteins in three different mouse models of HD with exon 1 mutant huntingtin: the R6/1, the R6/1:BDNF+/,, and the Tet/HD94 in which the huntingtin transgene is controlled by the tetracycline-inducible system. Our results disclosed an increase in the levels of the BH3-only proteins Bid and BimEL in the striatum of HD mouse models that was different depending on the stage of the disease. At 16 weeks of age, Bid was similarly enhanced in the striatum of R6/1 and R6/1:BDNF+/, mice, whereas BimEL protein levels were enhanced only in R6/1:BDNF+/, mice. In contrast, at later stages of the disease, both genotypes displayed increased levels of Bid and BimEL proteins. Furthermore, Bax, Bak, Bad, Bcl-2, and Bcl-xL proteins were not modified in any of the points analyzed. We next explored the potential reversibility of this phenomenon by analyzing conditional Tet/HD94 mice. Constitutive expression of the transgene resulted in increased levels of Bid and BimEL proteins, and only the Bid protein returned to wild-type levels 5 months after mutant huntingtin shutdown. In conclusion, our results show that enhanced Bid protein levels represent an early mechanism linked to the continuous expression of mutant huntingtin that, together with enhanced BimEL, may be a reporter of the progress and severity of neuronal dysfunction. © 2007 Wiley-Liss, Inc. [source]


Inhibition of NF-,B activation by the histone deacetylase inhibitor 4-Me2N-BAVAH induces an early G1 cell cycle arrest in primary hepatocytes

CELL PROLIFERATION, Issue 5 2007
P. Papeleu
4-Me2N-BAVAH has been shown to induce histone hyperacetylation and to inhibit proliferation in Friend erythroleukaemia cells in vitro. However, the molecular mechanisms have remained unidentified. Materials and Methods:,In this study, we evaluated the effects of 4-Me2N-BAVAH on proliferation in non-malignant cells, namely epidermal growth factor-stimulated primary rat hepatocytes. Results and Conclusion:,We have found that 4-Me2N-BAVAH inhibits HDAC activity at non-cytotoxic concentrations and prevents cells from responding to the mitogenic stimuli of epidermal growth factor. This results in an early G1 cell cycle arrest that is independent of p21 activity, but instead can be attributed to inhibition of cyclin D1 transcription through a mechanism involving inhibition of nuclear factor-kappaB activation. In addition, 4-Me2N-BAVAH delays the onset of spontaneous apoptosis in primary rat hepatocyte cultures as evidenced by down-regulation of the pro-apoptotic proteins Bid and Bax, and inhibition of caspase-3 activation. [source]


Mapping the Specific Cytoprotective Interaction of Humanin with the Pro-apoptotic Protein Bid

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2007
Jungyuen Choi
Humanin is a short endogenous peptide, which can provide protection from cell death through its association with various receptors, including the pro-apoptotic Bcl-2 family proteins Bid, Bim, and Bax. By using NMR chemical shift mapping experiments, we demonstrate that the interaction between Humanin-derived peptides and Bid is specific, and we localize the binding site to a region on the surface of Bid, which includes residues from the conserved helical BH3 domain of the protein. The BH3 domain mediates the association of Bid with other Bcl-2 family members and is essential for the protein's cytotoxic activity. The data suggest that Humanin exerts its cytoprotective activity by engaging the Bid BH3 domain; this would hinder the association of Bid with other Bcl-2 family proteins, thereby mitigating its toxicity. The identification of a Humanin-specific binding site on the surface of Bid reinforces its importance as a direct modulator of programmed cell death, and suggests a strategy for the design of cytoprotective peptide inhibitors of Bid. [source]