Home About us Contact | |||
Protective Immunity (protective + immunity)
Selected AbstractsAutologous Fixed Tumor Vaccine: A Formulation with Cytokine-microparticles for Protective Immunity against Recurrence of Human Hepatocellular CarcinomaCANCER SCIENCE, Issue 4 2002Bao Gang Peng We developed a tumor vaccine consisting of fixed hepatocellular carcinoma (HCC) cells/tissue fragments, biodegradable microparticles encapsulating granulocyte-macrophage-colony stimulating factor and interleukin-2, and an adjuvant. The vaccine protected 33% of syngeneic mice from HCC cell challenge. The vaccine containing human autologous HCC fragments showed essentially no adverse effect in a phase I/IIa clinical trial and 8/12 patients developed a delayed-type hyper-sensitivity (DTH) response against the fragments. Although 2 of 4 DTH-response-negative patients had recurrence after curative resection, the DTH-response-positive patients had no recurrence. The time before the first recurrence in the vaccinated patients was significantly longer than that in 24 historical control patients operated in the same department (P<0.05). This formulation is a promising candidate to prevent recurrence of human HCC. [source] Multiple functions of human T cells generated by experimental malaria challengeEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2009Stephen M. Todryk Abstract Protective immunity generated following malaria infection may be comprised of Ab or T cells against malaria Ag of different stages; however, the short-lived immunity that is observed suggests deficiency in immune memory or regulatory activity. In this study, cellular immune responses were investigated in individuals receiving Plasmodium falciparum sporozoite challenge by the natural (mosquito bite) route as part of a malaria vaccine efficacy trial. Parasitemia, monitored by blood film microscopy and PCR, was subsequently cleared with drugs. All individuals demonstrated stable IFN-,, IL-2 and IL-4 ex vivo ELISPOT effector responses against P. falciparum -infected RBC (iRBC) Ag, 28 and 90,days after challenge. However, infected RBC-specific central memory responses, as measured by IFN-, cultured ELISPOT, were low and unstable over time, despite CD4+ T cells being highly proliferative by CFSE dilution, and showed an inverse relationship to parasite density. In support of the observation of poor memory, co-culture experiments showed reduced responses to common recall Ag, indicating malaria-specific regulatory activity. This activity could not be accounted for by the expression of IL-10, TGF-,, FOXP3 or CTLA-4, but proliferating T cells expressed high levels of CD95, indicating a pro-apoptotic phenotype. Lastly, there was an inverse relationship between FOXP3 expression, when measured 10 days after challenge, and ex vivo IFN-, measured more than 100 days later. This study shows that malaria infection elicits specific Th1 and Th2 effector cells, but concomitant weak central memory and regulatory activity, which may help to explain the short-lived immunity observed. [source] Protective immunity of sevenband grouper, Epinephelus septemfasciatus Thunberg, against experimental viral nervous necrosisJOURNAL OF FISH DISEASES, Issue 1 2001S Tanaka This paper describes the protective immune responses of sevenband grouper, Epinephelus septemfasciatus Thunberg, immunized with live piscine nodavirus, the causative agent of viral nervous necrosis (VNN), or the Escherichia coli, expressed recombinant coat protein. Nodavirus-neutralizing antibodies were detected at titres ranging from 1:158 to 1:1257 in serum of sevenband grouper which survived intramuscular injection with the virus, by a cell culture assay system. The virus-neutralizing ability of immune serum was also confirmed by injecting virus previously treated with serum into fish. This indicates establishment of acquired immunity in survivors and thus explains why survivors from natural infection are resistant to recurrence of the disease. Young sevenband grouper were immunized twice by intramuscular injections with the recombinant coat protein. Immunized fish produced neutralizing antibodies at high titres for at least 110 days and showed significantly lower mortalities in virus challenge tests. These results suggest the potential for vaccination against VNN in sevenband grouper, which is susceptible to piscine nodavirus at all life-stages. [source] Accelerating the secondary immune response by inactivating CD4+CD25+ T regulatory cells prior to BCG vaccination does not enhance protection against tuberculosisEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2008Kylie M. Quinn Abstract CD4+CD25+ natural T regulatory cells (Tregs) have been shown to suppress protective immune responses in several different vaccination models. Since the effect of Tregs on vaccination against tuberculosis (Tb) was unknown, we used a murine model to investigate whether natural Tregs suppress the development of protective immunity following Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. Using a monoclonal antibody against CD25, natural Tregs were inactivated prior to vaccination with BCG. The primary immune response was evaluated after BCG vaccination and the secondary immune response was assessed after an intranasal BCG challenge 42,days after vaccination. Inactivation of natural Tregs prior to vaccination led to an increased immune response 14,days after vaccination, increased numbers of antigen-responsive lymphocytes immediately prior to secondary challenge and the earlier appearance of IFN-,-producing CD4+ and CD8+ lymphocytes in the draining lymph nodes and lungs after challenge. Despite this, protection from virulent Mycobacterium tuberculosis or M. bovis aerosol challenge was unaffected by natural Treg inactivation prior to BCG vaccination. This suggests that increasing the primary and accelerating the secondary immune responses by inactivating natural Tregs at the time of vaccination, does not affect the development of protective immunity to Tb. [source] Intradermal NKT cell activation during DNA priming in heterologous prime-boost vaccination enhances T cell responses and protection against LeishmaniaEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2008Blaise Dondji Abstract Heterologous prime-boost vaccination employing DNA-vaccinia virus (VACV) modality using the Leishmania homologue of receptors for activated C,kinase (LACK) (p36) antigen has been shown to elicit protective immunity against both murine cutaneous and visceral leishmaniasis. However, DNA priming is known to have limited efficacy; therefore in the current study the effect of NKT cell activation using ,-galactosyl-ceramide (,GalCer) during intradermal DNAp36 priming was examined. Vaccinated mice receiving ,GalCer,+ DNAp36 followed by a boost with VVp36 appeared to be resolving their lesions and had at ten- to 20-fold higher reductions in parasite burdens. NKT cell activation during ,GalCer,+ DNAp36 priming resulted in higher numbers of antigen-reactive effector CD4+ and CD8+ T cells producing granzyme and IFN-,, with lower levels of IL-10. Although immunodepletion studies indicate that both CD4 and CD8 T cells provide protection in the vaccinated mice, the contribution of CD4+ T cells was significantly increased in mice primed with DNAp36 together with ,GalCer. Notably 5,months after boosting, mice vaccinated with DNAp36,+ ,GalCer continued to show sustained and heightened T cell immune responses. Thus, heterologous prime-boost vaccination using ,GalCer during priming is highly protective against murine cutaneous leishmaniasis, resulting in the heightened activation and development of CD4 and CD8 T cells (effector and memory T cells). [source] Therapy-induced antitumor vaccination by targeting tumor necrosis factor-, to tumor vessels in combination with melphalanEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 12 2007Lorenzo Mortara Abstract Treatment of tumor-bearing mice with mouse (m)TNF-,, targeted to tumor vasculature by the anti-ED-B fibronectin domain antibody L19(scFv) and combined with melphalan, induces a therapeutic immune response. Upon treatment, a highly efficient priming of CD4+ T cells and consequent activation and maturation of CD8+ CTL effectors is generated, as demonstrated by in vivo depletion and adoptive cell transfer experiments. Immunohistochemical analysis of the tumor tissue demonstrated massive infiltration of CD4+ and CD8+ T cells 6,days after treatment and much earlier in the anamnestic response to tumor challenge in cured mice. In fact, the curative treatment with L19mTNF-, and melphalan resulted in long-lasting antitumor immune memory, accompanied by a mixed Th1/Th2-type response and significant in vitro tumor-specific cytolytic activity. Finally, the combined treatment reduced the percentage and absolute number of CD4+CD25+ regulatory T cells in the tumor-draining lymph nodes of mice responding to therapy, and this was associated with the establishment of protective immunity. These findings pave the way for alternative therapeutic strategies based on the targeted delivery of biological and pharmacological cytotoxic compounds that not only kill most of the tumor cells but, more importantly, trigger an effective and long-lasting antitumor adaptive immune response. [source] Immunization with heat-killed Francisella tularensis LVS elicits protective antibody-mediated immunityEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2007Christy Abstract Francisella tularensis (FT) has been classified by the CDC as a category,A pathogen because of its high virulence and the high mortality rate associated with infection via the aerosol route. Because there is no licensed vaccine available for FT, development of prophylactic and therapeutic regimens for the prevention/treatment of infection is a high priority. In this report, heat-killed FT live vaccine strain (HKLVS) was employed as a vaccine immunogen, either alone or in combination with an adjuvant, and was found to elicit protective immunity against high-dose FT live vaccine strain (FTLVS) challenge. FT-specific antibodies produced in response to immunization with HKLVS alone were subsequently found to completely protect naive mice against high-dose FT challenge in both infection-interference and passive immunization experiments. Additional passive immunization trials employing serum collected from mice immunized with a heat-killed preparation of an O-antigen-deficient transposon mutant of FTLVS (HKLVS-OAgneg) yielded similar results. These findings demonstrated that FT-specific antibodies alone can confer immunity against high-dose FTLVS challenge, and they reveal that antibody-mediated protection is not dependent upon production of LPS-specific antibodies. [source] Decreased specific CD8+ T,cell cross-reactivity of antigen recognition following vaccination with Melan-A peptideEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2006Victor Appay Abstract The aim of T,cell vaccines is the expansion of antigen-specific T,cells able to confer immune protection against pathogens or tumors. Although increase in absolute cell numbers, effector functions and TCR repertoire of vaccine-induced T,cells are often evaluated, their reactivity for the cognate antigen versus their cross-reactive potential is rarely considered. In fact, little information is available regarding the influence of vaccines on T,cell fine specificity of antigen recognition despite the impact that this feature may have in protective immunity. To shed light on the cross-reactive potential of vaccine-induced cells, we analyzed the reactivity of CD8+ T,cells following vaccination of HLA-A2+ melanoma patients with Melan-A peptide, incomplete Freund's adjuvant and CpG-oligodeoxynucleotide adjuvant, which was shown to induce strong expansion of Melan-A-reactive CD8+ T,cells in vivo. A collection of predicted Melan-A cross-reactive peptides, identified from a combinatorial peptide library, was used to probe functional antigen recognition of PBMC ex vivo and Melan-A-reactive CD8+ T,cell clones. While Melan-A-reactive CD8+ T,cells prior to vaccination are usually constituted of widely cross-reactive naive cells, we show that peptide vaccination resulted in expansion of memory T,cells displaying a reactivity predominantly restricted to the antigen of interest. Importantly, these cells are tumor-reactive. [source] Antibody-mediated bacterial clearance from the lower respiratory tract of mice requires complement component C3EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2004Elizabeth Abstract To assess the contribution of complement to respiratory immunity in the context of a natural bacterial infection, we used mice genetically deficient in complement components and the murine pathogen Bordetella bronchiseptica. Complement component C3 was not required for the control of bacterial infection or for the generation of infection-induced protective immunity. However, C3-deficient (C3,/,) mice were severely defective, compared to wild type, in vaccine-induced protective immunity. Adoptively transferred immune serum from convalescent wild-type or C3,/, animals rapidly cleared B.,bronchiseptica from the lungs of wild-type mice but did not affect its growth in C3,/, mice, indicating that the defect is not in the generation of protective immunity, but in its function. Immune serum was effective in C5-deficient mice but had little effect in the lungs of mice lacking either Fc, receptors (Fc,R) or CR3, suggesting bacterial clearance is not via direct complement-mediated lysis. Together, these data indicate that complement is required for antibody-mediated clearance of Bordetella and suggest the mechanism involves C3 opsonization of bacteria for phagocytosis that is both CR3- and Fc,R-dependent. [source] Induction of neutralizing antibodies in mice immunized with an amino-terminal polypeptide of Streptococcus mutans P1 protein produced by a recombinant Bacillus subtilis strainFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 2 2010Milene B. Tavares Abstract The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P139,512) derived from the S. mutans strain UA159. Purified P139,512 reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P139,512 induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P139,512 antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P139,512 eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P139,512, expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines. [source] Enhancement of protective humoral immune responses against Herpes simplex virus-2 in DNA-immunized guinea-pigs using protein boostingFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1 2008Fatemeh Fotouhi Abstract Genital Herpes is a common sexually transmitted disease that is caused mostly by Herpes simplex virus type 2 (HSV-2). Its prevalence has increased in developing countries in spite of the availability of valuable antiviral drug therapy. Considering the importance of HSV-2 infections, effective vaccines remain the most likely hope for controlling the spread of HSV diseases. In the present study, the complete HSV-2 glycoprotein D gene was isolated and cloned into different plasmid vectors to construct a DNA vaccine and prepare recombinant subunit vaccines using a baculovirus expression system. The vaccines were tested alone or in combination to evaluate their ability to induce protective immunity in guinea-pigs against genital HSV infections. Immunization elicited humoral responses as measured by neutralization tests and enzyme-linked immunosorbent assay, and immunized animals had less severe genital skin disease as well as reduced replication of the challenging virus in the genital tract during experimental infection. Our results further demonstrate that DNA priming-protein boosting induced a neutralizing antibody titer higher than that obtained with DNA,DNA vaccination. The massive increase of antibody titer following DNA priming-protein boosting might be attributed to a recall of B cell memory. [source] CD4+ T-cell memory: generation and multi-faceted roles for CD4+ T cells in protective immunity to influenzaIMMUNOLOGICAL REVIEWS, Issue 1 2006Susan L. Swain Summary:, We have outlined the carefully orchestrated process of CD4+ T-cell differentiation from naïve to effector and from effector to memory cells with a focus on how these processes can be studied in vivo in responses to pathogen infection. We emphasize that the regulatory factors that determine the quality and quantity of the effector and memory cells generated include (i) the antigen dose during the initial T-cell interaction with antigen-presenting cells; (ii) the dose and duration of repeated interactions; and (iii) the milieu of inflammatory and growth cytokines that responding CD4+ T cells encounter. We suggest that heterogeneity in these regulatory factors leads to the generation of a spectrum of effectors with different functional attributes. Furthermore, we suggest that it is the presence of effectors at different stages along a pathway of progressive linear differentiation that leads to a related spectrum of memory cells. Our studies particularly highlight the multifaceted roles of CD4+ effector and memory T cells in protective responses to influenza infection and support the concept that efficient priming of CD4+ T cells that react to shared influenza proteins could contribute greatly to vaccine strategies for influenza. [source] Inherited disorders of human Toll-like receptor signaling: immunological implicationsIMMUNOLOGICAL REVIEWS, Issue 1 2005Cheng-Lung Ku Summary:,In vitro nine of 10 known human Toll-like receptors (TLRs) are engaged by well-defined chemical agonists that mimic microbial compounds, raising the possibility that human TLRs play a critical role in protective immunity in vivo. We thus review here the recently described human primary immunodeficiencies caused by germline mutations in genes encoding molecules involved in cell signaling downstream from TLRs. Subjects with anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) carry either X-linked recessive hypomorphic mutations in NEMO or autosomal dominant hypermorphic mutations in IKBA. Their cells show a broad defect in nuclear factor-,B (NF-,B) activation, with an impaired, but not abolished response to a large variety of stimuli including TLR agonists. EDA-ID patients show developmental anomalies of skin appendages and a broad spectrum of infectious diseases. Patients with autosomal recessive amorphic mutations in IRAK4 present a purely immunological syndrome and more restricted defects, with specific impairment of the Toll and interleukin-1 receptor (TIR),interleukin-1 receptor-associated kinase (IRAK) signaling pathway. In these subjects, the NF-,B- and mitogen-activated protein kinase-mediated induction of inflammatory cytokines in response to TIR agonists is impaired. The patients present a narrow range of pyogenic bacterial infections that become increasingly rare with age. Altogether, these data suggest that human TLRs play a critical role in host defense. However, they do not provide compelling evidence, as even the infectious phenotype of patients with mutations in IRAK4 may result from impaired signaling via receptors other than TLRs. Paradoxically, these experiments of nature raise the possibility that the entire set of human TLRs is largely redundant in protective immunity in vivo. [source] Interleukin-13 in the skin and interferon-, in the liver are key players in immune protection in human schistosomiasisIMMUNOLOGICAL REVIEWS, Issue 1 2004Alain Dessein Summary:, Immunity against schistosomes includes anti-infection immunity, which is mainly active against invading larvae in the skin, and anti-disease immunity, which controls abnormal fibrosis in tissues invaded by schistosome eggs. Anti-infection immunity is T-helper 2 (Th2) cell-dependent and is controlled by a major genetic locus that is located near the Th2 cytokine locus on chromosome 5q31-q33. Mutations in the gene encoding interleukin (IL)-13 that decrease or increase IL-13 production account, at least in part, for that genetic control. In contrast, protection against hepatic fibrosis is dependent on interferon (IFN)-, and is controlled by a major genetic locus that is located on 6q23, near the gene encoding the IFN-, receptor , chain. Mutations that modulate IFN-, gene transcription are associated with different susceptibility to disease. These data indicate that IL-13 in the skin and IFN-, in the liver are key players in protective immunity against schistosomes. These roles relate to the high anti-fibrogenic activities of IFN-, and to the unique ability of IL-13 in Th2 priming in the skin and in the mobilization of eosinophils in tissues. The coexistence of strong IFN-, and IL-13-mediated immune responses in the same subject may involve the compartmentalization of the anti-schistosome immune response between the skin and the liver. [source] DNA vaccines suppress tumor growth and metastases by the induction of anti-angiogenesisIMMUNOLOGICAL REVIEWS, Issue 1 2004Ralph A. Reisfeld Summary:, Four novel oral DNA vaccines provide long-lived protection against melanoma, colon, breast, and non-small cell lung carcinoma in mouse model systems. The vaccines are delivered by attenuated Salmonella typhimurium to secondary lymphoid organs and are directed against targets such as carcinoembryonic antigen, tyrosine-related protein, vascular endothelial growth factor receptor-2 [also called fetal liver kinase-1 (FLK-1)], and transcription factor Fos-related antigen-1 (Fra-1). The FLK-1 and Fra-1 vaccines are effective in suppressing angiogenesis in the tumor vasculature. All four vaccines are capable of inducing potent cell-mediated protective immunity, breaking peripheral T-cell tolerance against these self-antigens resulting in effective suppression of tumor growth and metastasis. It is anticipated that such research efforts will contribute toward the rational design of future DNA vaccines that will be effective for prevention and treatment of human cancer. [source] Generation, persistence and plasticity of CD4 T-cell memoriesIMMUNOLOGY, Issue 4 2010Jason R. Lees Summary The development of immune memory mediated by T lymphocytes is central to durable, long-lasting protective immunity. A key issue in the field is how to direct the generation and persistence of memory T cells to elicit the appropriate secondary response to provide protection to a specific pathogen. Two prevailing views have emerged; that cellular and molecular regulators control the lineage fate and functional capacities of memory T cells early after priming, or alternatively, that populations of memory T cells are inherently plastic and subject to alterations in function and/or survival at many stages during their long-term maintenance. Here, we will review current findings in CD4 T-cell memory that suggest inherent plasticity in populations of memory CD4 T cells at all stages of their development , originating with their generation from multiple types of primed CD4 T cells, during their persistence and homeostatic turnover in response to T-cell receptor signals, and also following secondary challenge. These multiple aspects of memory CD4 T-cell flexibility contrast the more defined lineages and functions ascribed to memory CD8 T cells, suggesting a dynamic nature to memory CD4 T-cell populations and responses. The flexible attributes of CD4 T-cell memory suggest opportunities and mechanisms for therapeutic manipulation at all phases of immune memory development, maintenance and recall. [source] Priming of immune responses against transporter associated with antigen processing (TAP)-deficient tumours: tumour direct primingIMMUNOLOGY, Issue 3 2009Xiao-Lin Li Summary We previously showed that introduction of transporter associated with antigen processing (TAP) 1 into TAP-negative CMT.64, a major histocompatibility complex class I (MHC-I) down-regulated mouse lung carcinoma cell line, enhanced T-cell immunity against TAP-deficient tumour cells. Here, we have addressed two questions: (1) whether such immunity can be further augmented by co-expression of TAP1 with B7.1 or H-2Kb genes, and (2) which T-cell priming mechanism (tumour direct priming or dendritic cell cross-priming) plays the major role in inducing an immune response against TAP-deficient tumours. We introduced the B7.1 or H-2Kb gene into TAP1-expressing CMT.64 cells and determined which gene co-expressed with TAP1 was able to provide greater protective immunity against TAP-deficient tumour cells. Our results show that immunization of mice with B7.1 and TAP1 co-expressing but not H-2Kb and TAP1 co-expressing CMT.64 cells dramatically augments T-cell-mediated immunity, as shown by an increase in survival of mice inoculated with live CMT.64 cells. In addition, our results suggest that induction of T-cell-mediated immunity against TAP-deficient tumour cells could be mainly through tumour direct priming rather than dendritic cell cross-priming as they show that T cells generated by tumour cell-lysate-loaded dendritic cells recognized TAP-deficient tumour cells much less than TAP-proficient tumour cells. These data suggest that direct priming by TAP1 and B7.1 co-expressing tumour cells is potentially a major mechanism to facilitate immune responses against TAP-deficient tumour cells. [source] Cross-priming utilizes antigen not available to the direct presentation pathwayIMMUNOLOGY, Issue 1 2006Keri B. Donohue Summary CD8+ T cells play a crucial role in protective immunity to viruses and tumours. Antiviral CD8+ T cells are initially activated by professional antigen presenting cells (pAPCs) that are directly infected by viruses (direct-priming) or following uptake of exogenous antigen transferred from virus-infected or tumour cells (cross-priming). In order to efficiently target each of these antigen-processing pathways during vaccine design, it is necessary to delineate the properties of the natural substrates for either of these antigen-processing pathways. In this study, we utilized a novel T-cell receptor (TCR) transgenic mouse to examine the requirement for both antigen synthesis and synthesis of other cellular factors during direct or cross-priming. We found that direct presentation required ongoing synthesis of antigen, but that cross-priming favoured long-lived antigens and did not require ongoing antigen production. Even after prolonged blockade of protein synthesis in the donor cell, cross-priming was unaffected. In contrast, direct-presentation was almost undetectable in the absence of antigen neosynthesis and required ongoing protein synthesis. This suggests that the direct- and cross-priming pathways may utilize differing pools of antigen, an observation that has far-reaching implications for the rational design of vaccines aimed at the generation of protective CD8+ T cells. [source] Regulatory T cells in human disease and their potential for therapeutic manipulationIMMUNOLOGY, Issue 1 2006Leonie S. Taams Summary Regulatory T cells are proposed to play a central role in the maintenance of immunological tolerance in the periphery, and studies in many animal models demonstrate their capacity to inhibit inflammatory pathologies in vivo. At a recent meeting [Clinical Application of Regulatory T Cells, 7,8 April 2005, Horsham, UK, organized by the authors of this review, in collaboration with the British Society for Immunology and Novartis] evidence was discussed that certain human autoimmune, infectious and allergic diseases are associated with impaired regulatory T-cell function. In contrast, evidence from several human cancer studies and some infections indicates that regulatory T cells may impair the development of protective immunity. Importantly, certain therapies, both those that act non-specifically to reduce inflammation and antigen-specific immunotherapies, may induce or enhance regulatory T-cell function. The purpose of this review was to summarize current knowledge on regulatory T-cell function in human disease, and to assess critically how this can be tailored to suit the therapeutic manipulation of immunity. [source] Divide and conquer: the importance of cell division in regulating B-cell responsesIMMUNOLOGY, Issue 4 2004Stuart G. Tangye Summary Proliferation is an essential characteristic of clonal selection and is required for the expansion of antigen reactive clones leading to the development of antibody of different isotypes and memory cells. New data for mouse and human B cells point to an important role for division in regulating isotype class and in optimizing development of protective immunity by the regulated entry of cells to the plasma cell lineage. [source] Immunological basis of the development of necrotic lesions following Mycobacterium avium infectionIMMUNOLOGY, Issue 4 2002Manuela Flórido Summary Normal C57BL/6 mice infected with 106 colony-forming units of a highly virulent strain of Mycobacterium avium developed a progressive infection characterized by loss of T cells from the tissues and infiltration with high numbers of heavily infected macrophages. In contrast, when C57BL/6 mice were infected with 102 colony-forming units of the same strain they retained T cells and T-cell reactivity in the tissues, and granulomas evolved into large masses that, at 4 months of infection, exhibited central necrosis. The development of these necrotic lesions did not occur in nude mice, nor in mice genetically deficient in CD4, interleukin-12 (IL-12) p40, interferon-, (IFN-,) and CD40 and were reduced in mice deficient in CD54 or IL-6. They were less numerous but bigger in mice deficient in IL-10 or the inducible nitric oxide synthase, correlating with the increased resistance to mycobacterial proliferation of these strains as compared to control mice. The appearance of necrosis was not affected in mice deficient in CD8,, T-cell receptor ,, tumour necrosis factor receptor p55, and perforin, nor was it affected in mice over-expressing bcl2. The appearance of necrosis could be prevented by administering antibodies specific for CD4, IL-12p40, or IFN-, from the second month of infection when organized granulomas were already found. Our results show that the immunological mediators involved in the induction of protective immunity are also major players in the immunopathology associated with mycobacteriosis. [source] Intestinal dendritic cells: Their role in bacterial recognition, lymphocyte homing, and intestinal inflammationINFLAMMATORY BOWEL DISEASES, Issue 10 2010S.C. Ng PhD Abstract Dendritic cells (DCs) play a key role in discriminating between commensal microorganisms and potentially harmful pathogens and in maintaining the balance between tolerance and active immunity. The regulatory role of DC is of particular importance in the gut where the immune system lies in intimate contact with the highly antigenic external environment. Intestinal DC constantly survey the luminal microenvironment. They act as sentinels, acquiring antigens in peripheral tissues before migrating to secondary lymphoid organs to activate naive T cells. They are also sensors, responding to a spectrum of environmental cues by extensive differentiation or maturation. Recent studies have begun to elucidate mechanisms for functional specializations of DC in the intestine that may include the involvement of retinoic acid and transforming growth factor-,. Specialized CD103+ intestinal DC can promote the differentiation of Foxp3+ regulatory T cells via a retinoic acid-dependent process. Different DC outcomes are, in part, influenced by their exposure to microbial stimuli. Evidence is also emerging of the close interaction between bacteria, epithelial cells, and DC in the maintenance of intestinal immune homeostasis. Here we review recent advances of functionally specialized intestinal DC and their mechanisms of antigen uptake and recognition. We also discuss the interaction of DC with intestinal microbiota and their ability to orchestrate protective immunity and immune tolerance in the host. Lastly, we describe how DC functions are altered in intestinal inflammation and their emerging potential as a therapeutic target in inflammatory bowel disease. (Inflamm Bowel Dis 2010) [source] Expression of IL-27 in murine carcinoma cells produces antitumor effects and induces protective immunity in inoculated host animalsINTERNATIONAL JOURNAL OF CANCER, Issue 3 2005Masako Chiyo Abstract A novel cytokine interleukin-27 (IL-27), composed of p28 and Epstein-Barr virus-induced gene 3 (EBI3), is produced from activated dendritic cells and is involved in an early phase of T-helper type I differentiation. We examined whether Colon 26 murine colon carcinoma cells that were retrovirally transduced with the p28 -linked EBI3 gene (Colon 26/IL-27) could produce antitumor effects in inoculated mice. Although proliferation in vitro of Colon 26/IL-27 cells was not different from that of parent cells, syngeneic BALB/c mice rejected Colon 26/IL-27 tumors inoculated and subsequently acquired tumor-specific protective immunity. In contrast, mice inoculated with Colon 26 cells transduced with either the p28 or EBI3 gene developed tumors and survival of the mice remained the same as that of the mice inoculated with parent cells. Syngeneic nude mice developed Colon 26/IL-27 tumors, but the growth was retarded compared to that of parent tumors. Depletion of natural killer cells from nude mice with anti-asialo GM1 antibody diminished the growth retardation of Colon 26/IL-27 tumors. Survival of severe combined immunodeficient mice that received subcutaneous inoculation of Colon 26/IL-27 cells was not different from that of the immunodeficient mice inoculated with parent cells. Interferon-, was produced from CD4+ and CD8+ T, and natural killer cells of the mice that rejected Colon 26/IL-27 tumors and cytotoxic activity against Colon 26 cells were also detected from the mice. These data collectively suggest that expressed IL-27 in tumors produces T cell-dependent and-independent antitumor effects and is a possible therapeutic strategy for cancer. ©2005 Wiley-Liss, Inc. [source] Heterogeneity in the granulomatous response to mycobacterial infection in patients with defined genetic mutations in the interleukin 12-dependent interferon-gamma production pathwayINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 1 2002D. A. LAMMAS Summary Patients with genetic lesions in the Type-1 cytokine/cytokine receptor pathway exhibit a selective susceptibility to severe infections with poorly pathogenic mycobacteria and non-typhi salmonella spp. These experiments of nature demonstrate that IL-12-dependent IFN, production is critical for granuloma formation and therefore host immunity against such pathogens. The essential role of granuloma formation for protective immunity to these organisms is emphasized by the differing granuloma forming capabilities and resultant clinical sequelae observed in these patients which seems to reflect their ability to produce or respond to IFN, (Fig. 9). At one pole of this spectrum, represented by the complete IFN,R1/2 deficient patients, there is a complete absence of mature granuloma formation, whereas with the less severe mutations (i.e. partial IFN,R1/2, complete IL-12p40 and complete IL-12R,1 deficiency), granuloma formation is very heterogenous with wide variations in composition being observed. This suggests that in the latter individuals, who produce partial but suboptimal IFN, responses, other influences, including pathogen virulence and host genotype may also affect the type and scale of the cellular response elicited. Figure 9. ,Spectrum of genetic susceptibility to intracellular bacteria. At one pole of this spectrum complete IFN,R deficiencies are found; at the other pole are healthy resistant individuals. Partial IFN,R1 deficiencies, and complete IL-12R,1 and IL-12p40 deficiencies can be positioned in between, albeit closer to the former end of the spectrum, with clinical outcome also depending on pathogen virulence and host compensatory immune mechanism(s). Abbreviations: IFN,R , interferon gamma receptor, IL-12R,1 , interleukin 12 receptor-1 (modified from Ottenhoff et al. (1998)). [source] Characterization of serum and mucosal antibody responses and relative per cent survival in rainbow trout, Oncorhynchus mykiss (Walbaum), following immunization and challenge with Flavobacterium psychrophilumJOURNAL OF FISH DISEASES, Issue 12 2002B R LaFrentz Abstract Serum and mucosal antibody responses of juvenile rainbow trout, Oncorhynchus mykiss, were characterized by enzyme-linked immunosorbent assay (ELISA) following immunization with various preparations of formalin-killed Flavobacterium psychrophilum cells. The protective nature of these preparations was then determined by immunizing rainbow trout fry and challenging with the bacterium. Juvenile rainbow trout immunized intraperitoneally (i.p.) with formalin-killed F. psychrophilum emulsified with Freund's complete adjuvant (FCA), and i.p. with formalin-killed F. psychrophilum either with or without culture supernatant generated significant serum antibody responses by 6 and 9 weeks, respectively. Significant mucosal antibody responses were detected by 9 weeks only in fish immunized i.p. with killed F. psychrophilum/FCA. Following immunization and bacterial challenge of rainbow trout fry, protective immunity was conferred in F. psychrophilum/FCA and saline/FCA groups with relative per cent survival values of up to 83 and 51, respectively. Significant protection was not observed in treatment groups immunized by immersion or i.p. without adjuvant at the challenge doses tested. Results suggest that stimulation of non-specific immune factors enhances the ability of fish to mount a protective immune response, but specific antibody appears necessary to provide near complete protection. In this study, an ELISA was developed to monitor anti- F. psychrophilum antibody production in trout. The relationship of such responses to protective immunity suggests that future vaccination strategies against coldwater disease may require stimulation of both the innate and adaptive arms of the immune response. [source] Seasonal influenza activity in Hong Kong and its association with meteorological variationsJOURNAL OF MEDICAL VIROLOGY, Issue 10 2009Paul K.S. Chan Abstract Influenza seasons appear consistently in the temperate regions, but are more variable in tropical/subtropical regions. The determinant for such variation remains poorly understood. This study documented the activity of influenza over a 10-year period in Hong Kong; examining its association with changes in temperature and relative humidity. The two types of influenza exhibited different correlations with meteorological variations. Influenza A showed two seasonal peaks occurring respectively in winter/spring and summer months in most years. Influenza B showed a clear winter/spring peak, but its activity during summer months was more variable. Cold and humid conditions were associated with a higher activity of both influenza A and B. In contrast, hot and humid conditions were associated with a higher activity of influenza A, but were associated with only a moderate, less consistent increase in the activity of influenza B. A trend of increase in the magnitude of summer peaks of influenza A, but not influenza B, was observed. A hypothetical 2°C rise in temperature would decrease the proportion of favorable days for influenza A in December,April from 78% to 57%, but an increase from 58% to 71% in May,November; with a similar effect (from 83% to 62%) for influenza B during December,April, but a modest change (from 17% to 18%) during May,November. The presence of two seasonal peaks of influenza annually emphasizes the need to evaluate the duration of protective immunity offered by vaccination. Further study on the effects of climate change and global warming on the activity of influenza is warranted. J. Med. Virol. 81:1797,1806, 2009. © 2009 Wiley-Liss, Inc. [source] Experimental periodontitis in mice selected for maximal or minimal inflammatory reactions: increased inflammatory immune responsiveness drives increased alveolar bone loss without enhancing the control of periodontal infectionJOURNAL OF PERIODONTAL RESEARCH, Issue 4 2009A. P. F. Trombone Background and Objective:, Inflammatory immune reactions that occur in response to periodontopathogens are thought to protect the host against infection, but may trigger periodontal destruction. However, the molecular and genetic mechanisms underlying host susceptibility to periodontal infection and to periodontitis development have still not been established in detail. Material and Methods:, In this study, we examined the mechanisms that modulate the outcome of Aggregatibacter (Actinobacillus) actinomycetemcomitans -induced periodontal disease in mice mouse strains selected for maximal (AIRmax) or minimal (AIRmin) inflammatory reactions. Results:, Our results showed that AIRmax mice developed a more severe periodontitis than AIRmin mice in response to A. actinomycetemcomitans infection, and this periodontitis was characterized by increased alveolar bone loss and inflammatory cell migration to periodontal tissues. In addition, enzyme-linked immunosorbent assays demonstrated that the levels of the cytokines interleukin-1,, tumor necrosis factor-, and interleukin-17 were higher in AIRmax mice, as were the levels of matrix metalloproteinase (MMP)-2, MMP-13 and receptor activator of nuclear factor-,B ligand (RANKL) mRNA levels. However, the more intense inflammatory immune reaction raised by the AIRmax strain, in spite of the higher levels of antimicrobial mediators myeloperoxidase and inducible nitric oxide synthase, did not enhance the protective immunity to A. actinomycetemcomitans infection, because both AIRmax and AIRmin strains presented similar bacterial loads in periodontal tissues. In addition, the AIRmax strain presented a trend towards higher levels of serum C-reactive protein during the course of disease. Conclusion:, Our results demonstrate that the intensity of the inflammatory immune reaction is associated with the severity of experimental periodontitis, but not with the control of A. actinomycetemcomitans periodontal infection, suggesting that the occurrence of hyperinflammatory genotypes may not be an evolutionary advantage in the complex host,pathogen interaction observed in periodontal diseases. [source] Host immunity modulates transcriptional changes in a multigene family (yir) of rodent malariaMOLECULAR MICROBIOLOGY, Issue 3 2005Deirdre A. Cunningham Summary Variant antigens, encoded by multigene families, and expressed at the surface of erythrocytes infected with the human malaria parasite Plasmodium falciparum and the simian parasite Plasmodium knowlesi, are important in evasion of host immunity. The vir multigene family, encoding a very large number of variant antigens, has been identified in the human parasite Plasmodium vivax and homologues (yir) of this family exist in the rodent parasite Plasmodium yoelii. These genes are part of a superfamily (pir) which are found in Plasmodium species infecting rodents, monkeys and humans (P. yoelii, P. berghei, P. chabaudi, P. knowlesi and P. vivax). Here, we show that YIR proteins are expressed on the surface of erythrocytes infected with late-stage asexual parasites, and that host immunity modulates transcription of yir genes. The surface location and expression pattern of YIR is consistent with a role in antigenic variation. This provides a unique opportunity to study the regulation and expression of the pir superfamily, and its role in both protective immunity and antigenic variation, in an easily accessible animal model system. [source] Oral immunization with Porphyromonas gingivalis outer membrane protein and CpG oligodeoxynucleotides elicits T helper 1 and 2 cytokines for enhanced protective immunityMOLECULAR ORAL MICROBIOLOGY, Issue 3 2010C. Liu Summary The aim of this study was to evaluate the efficacy of an oral vaccine containing the 40-kDa outer membrane protein of Porphyromonas gingivalis (40K-OMP) and synthetic oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG ODN) to control oral infection by P. gingivalis. Oral immunization with 40K-OMP plus CpG ODN induced significant 40K-OMP-specific serum immunoglobulin G (IgG), IgA, and saliva IgA antibody responses. The 40K-OMP-specific CD4+ T cells induced by oral 40K-OMP plus CpG ODN produced both T helper type 1 (Th1; interferon-,) and Th2 (interleukin-4) cytokines. Furthermore, increased frequencies of CD11c+ B220+ dendritic cells (DCs) and CD11c+ CD11b+ DCs with upregulated expression of CD80, CD86, CD40, and major histocompatibility complex class II molecules were noted in spleen, Peyer's patches, and cervical lymph nodes. Immunized mice were then infected orally with P. gingivalis to determine whether the immune responses induced by oral 40K-OMP plus CpG ODN were capable of suppressing the bone resorption caused by P. gingivalis infection. Mice given 40K-OMP plus CpG ODN showed significantly reduced bone loss associated with oral infection by P. gingivalis. Oral administration of 40K-OMP together with CpG ODN induces Th1-type and Th2-type cells, which provide help for protective immunity against P. gingivalis infection. This may be an important tool for the prevention of chronic periodontitis. [source] Evaluation of the immune response against Strongyloides venezuelensis in antigen-immunized or previously infected micePARASITE IMMUNOLOGY, Issue 3 2008A. FERNANDES Summary The present study was carried out to investigate the immune response against Strongyloides venezuelensis infection in Balb/c mice previously immunized with larva-antigens or primed with live-larvae. Our results indicate that all primed mice developed a strong protection against challenge infection that remained active for 45 days. In mice primed with live-larvae the challenge infection resulted in great reduction of migrating larvae and the worms were completely eliminated from the small intestine before maturation. The protection pattern did not alter when the primary infection was aborted by drug treatment. In these experimental groups, the challenge infection was accompanied by a type-2 predominant immune response, intense IgE and reactive IgG1 production, and granulocyte infiltration in skin, lungs and intestine. The challenge infection in antigen-immunized mice also resulted in great reduction of migrating larvae. However, the worms that reached the host intestine matured, produced eggs and were eliminated similarly to the ones from nonimmunized mice. Protective mechanisms after immunization with larva antigen were migrating larva-specific and associated with a strong and mixed Th1 and Th2 response, without tissue granulocyte infiltration. In conclusion, protective immunity induced by a previous infection or antigen-immunization are stage-specific and operate through different effector mechanisms. [source] |