Home About us Contact | |||
Attractive Plant (attractive + plant)
Selected AbstractsHibiscus polyphenol-rich extract induces apoptosis in human gastric carcinoma cells via p53 phosphorylation and p38 MAPK/FasL cascade pathwayMOLECULAR CARCINOGENESIS, Issue 2 2005Hui-Hsuan Lin Abstract In view of the continuing need for effective anticancer agents, and the association of diet with reduced cancer risk, edible plants are increasingly being considered as sources of anticancer drugs. Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. Polyphenols had been demonstrated previously to possess antioxidative and antitumor promoting effects. In this study, investigations were conducted to examine the mechanism of the anticancer activity of H. sabdariffa L., Hibiscus polyphenol-rich extracts (HPE). Using HPLC assay, HPE was demonstrated to contain various polyphenols. HPE induced cell death of eight kinds of cell lines in a concentration-dependent manner. Among them human gastric carcinoma (AGS) cells were the most susceptible to HPE (0.95 mg/mL HPE inhibited its growth by 50%). Our results revealed that AGS cells underwent DNA fragmentation, and had an increase in the distribution of hypodiploid phase (apoptotic peak, 52.36%) after a 24-h treatment with HPE (2.0 mg/mL). This effect of HPE in AGS cells might be mediated via p53 signaling and p38 MAPK/FasL cascade pathway, as demonstrated by an increase in the phosphorylation of p53 and the usage of a specific p38 inhibitor, SB203580. Thus, our data present the first evidence of HPE as an apoptosis inducer in AGS cells and these findings may open interesting perspectives to the strategy in human gastric cancer treatment. © 2005 Wiley-Liss, Inc. [source] Development of a synthetic plant volatile-based attracticide for female noctuid moths.AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 1 2010Abstract This paper is the first of a series which will describe the development of a synthetic plant volatile-based attracticide for noctuid moths. It discusses potential sources of volatiles attractive to the cotton bollworm, Helicoverpa armigera (Hübner), and an approach to the combination of these volatiles in synthetic blends. We screened a number of known host and non-host (for larval development) plants for attractiveness to unmated male and female moths of this species, using a two-choice olfactometer system. Out of 38 plants tested, 33 were significantly attractive to both sexes. There was a strong correlation between attractiveness of plants to males and females. The Australian natives, Angophora floribunda and several Eucalyptus species were the most attractive plants. These plants have not been recorded either as larval or oviposition hosts of Helicoverpa spp., suggesting that attraction in the olfactometer might have been as nectar foraging rather than as oviposition sources. To identify potential compounds that might be useful in developing moth attractants, especially for females, collections of volatiles were made from plants that were attractive to moths in the olfactometer. Green leaf volatiles, floral volatiles, aromatic compounds, monoterpenes and sesquiterpenes were found. We propose an approach to developing synthetic attractants, here termed ,super-blending', in which compounds from all these classes, which are in common between attractive plants, might be combined in blends which do not mimic any particular attractive plant. [source] Time allocation of a parasitoid foraging in heterogeneous vegetation: implications for host,parasitoid interactionsJOURNAL OF ANIMAL ECOLOGY, Issue 5 2007TIBOR BUKOVINSZKY Summary 1Changing plant composition in a community can have profound consequences for herbivore and parasitoid population dynamics. To understand such effects, studies are needed that unravel the underlying behavioural decisions determining the responses of parasitoids to complex habitats. 2The searching behaviour of the parasitoid Diadegma semiclausum was followed in environments with different plant species composition. In the middle of these environments, two Brassica oleracea plants infested by the host Plutella xylostella were placed. The control set-up contained B. oleracea plants only. In the more complex set-ups, B. oleracea plants were interspersed by either Sinapis alba or Hordeum vulgare. 3Parasitoids did not find the first host-infested plant with the same speed in the different environments. Sinapis alba plants were preferentially searched by parasitoids, resulting in fewer initial host encounters, possibly creating a dynamic enemy-free space for the host on adjacent B. oleracea plants. In set-ups with H. vulgare, also, fewer initial host encounters were found, but in this case plant structure was more likely than infochemicals to interfere with the searching behaviour of parasitoids. 4On discovering a host-infested plant, parasitoids located the second host-infested plant with equal speed, demonstrating the effect of experience on time allocation. Further encounters with host-infested plants that had already been visited decreased residence times and increased the tendency to leave the environment. 5Due to the intensive search of S. alba plants, hosts were encountered at lower rates here than in the other set-ups. However, because parasitoids left the set-up with S. alba last, the same number of hosts were encountered as in the other treatments. 6Plant composition of a community influences the distribution of parasitoid attacks via its effects on arrival and leaving tendencies. Foraging experiences can reduce or increase the importance of enemy-free space for hosts on less attractive plants. [source] Development of a synthetic plant volatile-based attracticide for female noctuid moths.AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 1 2010Abstract This paper is the first of a series which will describe the development of a synthetic plant volatile-based attracticide for noctuid moths. It discusses potential sources of volatiles attractive to the cotton bollworm, Helicoverpa armigera (Hübner), and an approach to the combination of these volatiles in synthetic blends. We screened a number of known host and non-host (for larval development) plants for attractiveness to unmated male and female moths of this species, using a two-choice olfactometer system. Out of 38 plants tested, 33 were significantly attractive to both sexes. There was a strong correlation between attractiveness of plants to males and females. The Australian natives, Angophora floribunda and several Eucalyptus species were the most attractive plants. These plants have not been recorded either as larval or oviposition hosts of Helicoverpa spp., suggesting that attraction in the olfactometer might have been as nectar foraging rather than as oviposition sources. To identify potential compounds that might be useful in developing moth attractants, especially for females, collections of volatiles were made from plants that were attractive to moths in the olfactometer. Green leaf volatiles, floral volatiles, aromatic compounds, monoterpenes and sesquiterpenes were found. We propose an approach to developing synthetic attractants, here termed ,super-blending', in which compounds from all these classes, which are in common between attractive plants, might be combined in blends which do not mimic any particular attractive plant. [source] |