Home About us Contact | |||
Attachment Protein (attachment + protein)
Terms modified by Attachment Protein Selected AbstractsRole of D1 and E Cyclins in Cell Cycle Progression of Human Fibroblasts Adhering to Cementum Attachment Protein,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2001Takayoshi Yokokoji Abstract Cementum attachment protein (CAP) is a collagenous protein present in the matrix of tooth cementum that mediates preferential attachment of some mesenchymal cell types, and CAP binding capacity is related to mineralizing tissue-forming capacity in culture. We have examined if adhesion to surfaces containing CAP as the only attachment protein permits human fibroblasts to escape G1 arrest and synthesize DNA, and if adhesion to CAP modulates the levels of cyclins D1 and E. Human gingival fibroblasts (HGFs) were serum-starved, trypsinized, and added to plates coated with CAP or bovine serum albumin (BSA). Cells were then exposed to either 10% fetal bovine serum (FBS) or to cementum-derived growth factor (CGF), an insulin-like growth factor I (IGF-I)-like molecule sequestered in tooth cementum, plus epidermal growth factor (EGF). DNA synthesis was measured as [3H]thymidine uptake, and cyclin D1 and E levels were determined by Western analysis. Cyclin E-dependent kinase (Cdk) activity was assessed in terms of H1 kinase activity in immunoprecipitates of cyclin E. Cells adhering to CAP synthesized DNA, whereas on BSA they remained unattached and did not synthesize DNA. Protein levels of cyclin D1 were higher in cells adhering to CAP in the absence and presence of growth factors. Cyclin E levels were not affected by adhesion alone, but they increased in the presence of growth factors. Cyclin E-associated kinase activity was higher in cells adherent on CAP, and it increased further in the presence of growth factors. Our results indicate that adhesion to CAP increases cyclin D1 levels and cyclin E-associated Cdk activity, and that these increases contribute to cell cycle progression. We previously observed that the signaling reactions induced during adhesion are characteristic of the CAP; together these observations indicate that specific matrix components present in the local environment can contribute to recruitment and differentiation of specific cell types for normal homeostasis and wound healing. [source] Strain-dependent regulation of neurotransmission and actin-remodelling proteins in the mouse hippocampusGENES, BRAIN AND BEHAVIOR, Issue 2 2006D. D. Pollak Individual mouse strains differ significantly in terms of behaviour, cognitive function and long-term potentiation. Hippocampal gene expression profiling of eight different mouse strains points towards strain-specific regulation of genes involved in neuronal information storage. Protein expression with regard to strain- dependent expression of structures related to neuronal information storage has not been investigated yet. Herein, a proteomic approach based on two-dimensional gel electrophoresis coupled with mass spectrometry (MALDI-TOF/TOF) has been chosen to address this question by determining strain-dependent expression of proteins involved in neurotransmission and activity-induced actin remodelling in hippocampal tissue of five mouse strains. Of 31 spots representing 16 different gene products analysed and quantified, N -ethylmaleimide-sensitive fusion protein, N -ethylmaleimide-sensitive factor attachment protein-,, actin-like protein 3, profilin and cofilin were expressed in a strain-dependent manner. By treating protein expression as a phenotype, we have shown significant genetic variation in brain protein expression. Further experiments in this direction may provide an indication of the genetic elements that contribute to the phenotypic differences between the selected strains through the expressional level of the translated protein. In view of this, we propose that proteomic analysis enabling to concomitantly survey the expression of a large number of proteins could serve as a valuable tool for genetic and physiological studies of central nervous system function. [source] Role of D1 and E Cyclins in Cell Cycle Progression of Human Fibroblasts Adhering to Cementum Attachment Protein,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2001Takayoshi Yokokoji Abstract Cementum attachment protein (CAP) is a collagenous protein present in the matrix of tooth cementum that mediates preferential attachment of some mesenchymal cell types, and CAP binding capacity is related to mineralizing tissue-forming capacity in culture. We have examined if adhesion to surfaces containing CAP as the only attachment protein permits human fibroblasts to escape G1 arrest and synthesize DNA, and if adhesion to CAP modulates the levels of cyclins D1 and E. Human gingival fibroblasts (HGFs) were serum-starved, trypsinized, and added to plates coated with CAP or bovine serum albumin (BSA). Cells were then exposed to either 10% fetal bovine serum (FBS) or to cementum-derived growth factor (CGF), an insulin-like growth factor I (IGF-I)-like molecule sequestered in tooth cementum, plus epidermal growth factor (EGF). DNA synthesis was measured as [3H]thymidine uptake, and cyclin D1 and E levels were determined by Western analysis. Cyclin E-dependent kinase (Cdk) activity was assessed in terms of H1 kinase activity in immunoprecipitates of cyclin E. Cells adhering to CAP synthesized DNA, whereas on BSA they remained unattached and did not synthesize DNA. Protein levels of cyclin D1 were higher in cells adhering to CAP in the absence and presence of growth factors. Cyclin E levels were not affected by adhesion alone, but they increased in the presence of growth factors. Cyclin E-associated kinase activity was higher in cells adherent on CAP, and it increased further in the presence of growth factors. Our results indicate that adhesion to CAP increases cyclin D1 levels and cyclin E-associated Cdk activity, and that these increases contribute to cell cycle progression. We previously observed that the signaling reactions induced during adhesion are characteristic of the CAP; together these observations indicate that specific matrix components present in the local environment can contribute to recruitment and differentiation of specific cell types for normal homeostasis and wound healing. [source] A comparative molecular force spectroscopy study of homophilic JAM-A interactions and JAM-A interactions with reovirus attachment protein ,1JOURNAL OF MOLECULAR RECOGNITION, Issue 4 2008Sri Ram Krishna Vedula Abstract JAM-A belongs to a family of immunoglobulin-like proteins called junctional adhesion molecules (JAMs) that localize at epithelial and endothelial intercellular tight junctions. JAM-A is also expressed on dendritic cells, neutrophils, and platelets. Homophilic JAM-A interactions play an important role in regulating paracellular permeability and leukocyte transmigration across epithelial monolayers and endothelial cell junctions, respectively. In addition, JAM-A is a receptor for the reovirus attachment protein, ,1. In this study, we used single molecular force spectroscopy to compare the kinetics of JAM-A interactions with itself and ,1. A chimeric murine JAM-A/Fc fusion protein and the purified ,1 head domain were used to probe murine L929 cells, which express JAM-A and are susceptible to reovirus infection. The bond half-life (t1/2) of homophilic JAM-A interactions was found to be shorter () than that of ,1/JAM-A interactions (). These results are in accordance with the physiological functions of JAM-A and ,1. A short bond lifetime imparts a highly dynamic nature to homophilic JAM-A interactions for regulating tight junction permeability while stable interactions between ,1 and JAM-A likely anchor the virus to the cell surface and facilitate viral entry. Copyright © 2008 John Wiley & Sons, Ltd. [source] NSF binds calcium to regulate its interaction with AMPA receptor subunit GluR2JOURNAL OF NEUROCHEMISTRY, Issue 6 2007Jonathan G. Hanley Abstract N -ethylmaleimide-sensitive fusion protein (NSF) is essential for numerous Ca2+ -triggered vesicle trafficking events. It functions as a molecular chaperone to regulate trafficking protein complexes such as the soluble NSF attachment protein (SNAP) receptor complex and the ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-protein interacting with C-kinase (PICK1) complex. AMPAR trafficking is fundamental to processes of synaptic plasticity, which may underlie learning and memory. Changes in synaptic strength brought about by AMPAR trafficking are triggered by a post-synaptic influx of Ca2+, which may have numerous molecular targets including PICK1. NSF binds AMPAR subunit glutamate receptor subunit 2 (GluR2) and functions to maintain receptors at the synapse. In this study, it was showed that NSF is a Ca2+ -binding protein and that GluR2,NSF interactions are inhibited by the presence of 15 ,mol/L Ca2+. NSF Ca2+ -binding is reciprocally inhibited by the presence of GluR2 C-terminus. Mutant of NSF that binds Ca2+ with reduced affinity and binds GluR2 with reduced sensitivity to Ca2+ was identied. In addition, the interaction of ,SNAP with PICK1 is sensitive to Ca2+. This study demonstrates that the GluR2-NSF-,SNAP-PICK1 complex is regulated directly by Ca2+, allowing for the transduction of Ca2+ signals into concerted alterations in protein,protein interactions to bring about changes in AMPAR trafficking during synaptic plasticity. [source] Molecular targets of botulinum toxin at the mammalian neuromuscular junctionMOVEMENT DISORDERS, Issue S8 2004Dorothy D. Whelchel MS Abstract The molecular targets of botulinum neurotoxins (BoNTs) are SNARE (soluble N -ethylmaleimide-sensitive factor- attachment protein- receptor) proteins necessary for neurotransmitter release. BoNT are powerful therapeutic agents in the treatment of numerous neurological disorders. The goals of this study were to (1) assess toxin diffusion by measuring substrate cleavage in adjacent and distant muscles, and (2) characterize the clinical course using SNARE protein chemistry. A small volume of BoNT/A was injected unilaterally into the mouse gastrocnemius muscle. Motor impairment was limited to the toxin-treated limb. No systemic illness or deaths occurred. At five time points, a subset of mice were killed, and muscles from both hindlimbs, and the diaphragm, were collected. Protein samples were examined for changes in SNAP-25 (synaptosomal-associated protein of Mr = 25 kDa) using immunochemistry. SNAP-25 cleavage product was noted in the toxin-treated limb as early as 1 day postinjection and continued through day 28. Onset and peak levels of substrate cleavage corresponded to the onset and peak clinical response. Cleavage was observed in adjacent and distant muscles, demonstrating that substrate cleavage is a sensitive indicator of toxin diffusion. Significant increases in full-length SNAP-25 and vesicle-associated membrane protein II were evident early in the impaired limb and continued through day 28. The increased SNARE protein most likely originates from nerve terminal sprouts. © 2004 Movement Disorder Society [source] |