Atrial Activation Patterns (atrial + activation_pattern)

Distribution by Scientific Domains


Selected Abstracts


Identical Atrial Activation Patterns During Spontaneous Initiations of Atrial Fibrillation

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2000
David S. Rosenbaum M.D. Section Editor
[source]


Mapping of Atrial Activation Patterns After Inducing Contiguous Radiofrequency Lesions: An Experimental Study

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 2 2001
FRANCISCO J. CHORRO
CHORRO, F.J., et al.: Mapping of Atrial Activation Patterns After Inducing Contiguous Radiofrequency Lesions: An Experimental Study. High resolution mapping techniques are used to analyze the changes in atrial activation patterns produced by contiguous RF induced lesions. In 12 Langendorff-perfused rabbit hearts, left atrial activation maps were obtained before and after RF induction of epicardial lesions following a triple-phase sequential protocol: (phase 1) three separate lesions positioned vertically in the central zone of the left atrial wall; (phase 2) the addition of two lesions located between the central lesion and the upper and lower lesions; and (phase 3) the placement of four additional lesions between those induced in the previous phases. In six additional experiments a pathological analysis of the individual RF lesions was performed. In phase 1 (lesion diameter = 2.8 ± 0.2 mm, gap between lesions = 3 ± 0.8 mm), the activation process bordered the lesions line in two (2.0-ms cycles) and four experiments (1.0-ms cycles). In phase 2, activation bordered the lesions line in eight (2.0-ms cycles, P < 0.01 vs control) and nine experiments (1.0-ms cycles, P < 0.001), and in phase 3 this occurred in all experiments except one (both cycles, P < 0.001 vs control). In the experiments with conduction block, the increment of the interval between activation times proximal and distal to the lesions showed a significant correlation to the length of the lesions (r = 0.68, P < 0.05, 100-ms cycle). In two (17%) experiments, sustained regular tachycardias were induced with reentrant activation patterns around the lesions line. In conclusion, in this acute model, atrial RF lesions with intact tissue gaps of 3 mm between them interrupt conduction occasionally, and conduction block may be frequency dependent. Lesion overlap is required to achieve complete conduction block lines. Tachycardias with reentrant activation patterns around a lesions line may be induced. [source]


Relationship Between Connexins and Atrial Activation During Human Atrial Fibrillation

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 2 2004
M.R.C.P., PRAPA KANAGARATNAM Ph.D.
Introduction: Gap junctional connexin proteins (connexin40 [Cx40], connexin43 [Cx43]) are a determinant of myocardial conduction and are implicated in the development of atrial fibrillation (AF). We hypothesized that atrial activation pattern during AF is related to connexin expression and that this relationship is altered by AF-induced remodeling in the fibrillating atria of chronic AF. Methods and Results: Isochronal activation mapping was performed during cardiac surgery on the right atria of patients in chronic AF (n = 13) using an epicardial electrode array. The atrial activation pattern was categorized using a complexity score based on the number of propagating wavefronts of activation and by grouping atria into those capable of uniform planar activation (simple) and those that were not (complex). The activation pattern was correlated with the levels of Cx43 and Cx40 signal measured by immunoconfocal quantification of biopsies from the mapped region. We studied the impact of electrical remodeling by comparing these findings with the unremodeled atria of patients in sinus rhythm during pacing-induced sustained AF (n = 17). In chronic AF, atria with complex activation had lower Cx40 signal than atria showing simple activation (0.013 ± 0.006 ,m2/,m2 vs 0.027 ± 0.009 ,m2/,m2, P < 0.02), with the relative connexin signal (Cx40/Cx40+Cx43) correlating with complexity score (P = 0.01, r =,0.74). This relationship did not occur in the unremodeled atria, and increased heterogeneity of distribution of Cx40 labeling in chronic AF was the only evidence of connexin remodeling that we detected in the overall group. Conclusion: The pattern of atrial activation is related to immunoconfocal connexin signal only in the fully remodeled atria of chronic AF. This suggests that intercellular coupling and pattern of atrial activation are interrelated, but only in conjunction with the remodeling of atrial electrophysiology that occurs in chronic AF. (J Cardiovasc Electrophysiol, Vol. 15, pp. 206-213, February 2004) [source]


Variability in Postpacing Intervals Predicts Global Ventricular Activation Pattern during Tachycardia

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 2 2010
ILYAS K. COLOMBOWALA M.D.
Introduction: Assessment of ventricular activation pattern is critical to the successful ablation of ventricular tachycardia (VT). We have previously shown that the global atrial activation pattern during tachycardia can be rapidly and accurately assessed by calculating the postpacing interval variability (PPIV); PPIV was minimal in circuitous tachycardias and highly variable in centrifugal tachycardias. In the present study, we use the PPIV to determine the ventricular global activation pattern during VT. Methods: Patients with mappable VT were included. We defined global ventricular activation as either centrifugal (arising from a focus with radial expansion) or circuitous (gross macro-reentrant circuit), based on the findings of electroanatomic mapping. PPIV was calculated as the difference in postpacing interval with right ventricular apical overdrive pacing during tachycardia at cycle lengths (CL) 10 ms and 30-ms shorter than tachycardia, regardless of the origin of the tachycardia. We studied 20 patients with 23 VTs (11 centrifugal, mean CL 390 ± 36.1 ms; 12 circuitous, mean CL 418 ± 75.7 ms). Results: The mean PPIV was 45 ± 16 ms for patients with centrifugal VT and 6.7 ± 4.1 ms for patients with circuitous VT. Rank sum analysis of PPIV showed a significant difference between the two groups (P < 0.05). Conclusions: Our data suggest that the global ventricular activation pattern during VT can be rapidly and accurately defined by assessing the PPIV. This technique allows for a rapid confirmation of the tachycardia activation and significantly facilitates mapping and ablation. (PACE 2010; 33:129,134) [source]


Reentry Within the Cavotricuspid Isthmus: An Isthmus Dependent Circuit

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 8 2005
YANFEI YANG
Background: We describe a new cavotricuspid isthmus (CTI) circuit. Methods: This study includes 8 patients referred for atrial flutter (AFL) ablation whose tachycardia circuit was confined to the septal CTI and the os of the coronary sinus (CSOS) region. Entrainment mapping was performed within the CTI, CSOS, and other right atrial annular sites (tricuspid annulus (TA)). Electroanatomic mapping was available in 2 patients. Results: Sustained AFL occurred in all patients with mean tachycardia cycle length (TCL) of 318 ± 54 (276 , 420) ms. During tachycardia, fractionated or double potentials were recorded at either the septal CTI and/or the region of CSOS in all, and concealed entrainment with post-pacing interval (PPI) , TCL , 25 ms occurred in this area; but manifest entrainment with PPI > TCL was demonstrated from the anteroinferior CTI and other annular sites in 7/8 patients. In one, tachycardia continued with conduction block at the anteroinferior CTI during ablation. Up to three different right atrial activation patterns (identical TCL) were observed. The tachycardia showed a counterclockwise (CCW) pattern in 6, a clockwise pattern in 2, and simultaneous activation of both low lateral right atrium and septum in 5. Electroanatomic mapping was available in 2, showing an early area arising from the septal CTI in 1, and a CCW activation sequence along the TA in another. Radiofrequency application to the septal CTI terminated tachycardia in 4, and tachycardia no longer inducible in all. Conclusions: We describe a tachycardia circuit confined to the septal CTI/CSOS region, and hypothesize that this circuit involves slow conduction within the CTI and around the CSOS, which acts as a central obstacle. [source]


Mapping of Atrial Activation Patterns After Inducing Contiguous Radiofrequency Lesions: An Experimental Study

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 2 2001
FRANCISCO J. CHORRO
CHORRO, F.J., et al.: Mapping of Atrial Activation Patterns After Inducing Contiguous Radiofrequency Lesions: An Experimental Study. High resolution mapping techniques are used to analyze the changes in atrial activation patterns produced by contiguous RF induced lesions. In 12 Langendorff-perfused rabbit hearts, left atrial activation maps were obtained before and after RF induction of epicardial lesions following a triple-phase sequential protocol: (phase 1) three separate lesions positioned vertically in the central zone of the left atrial wall; (phase 2) the addition of two lesions located between the central lesion and the upper and lower lesions; and (phase 3) the placement of four additional lesions between those induced in the previous phases. In six additional experiments a pathological analysis of the individual RF lesions was performed. In phase 1 (lesion diameter = 2.8 ± 0.2 mm, gap between lesions = 3 ± 0.8 mm), the activation process bordered the lesions line in two (2.0-ms cycles) and four experiments (1.0-ms cycles). In phase 2, activation bordered the lesions line in eight (2.0-ms cycles, P < 0.01 vs control) and nine experiments (1.0-ms cycles, P < 0.001), and in phase 3 this occurred in all experiments except one (both cycles, P < 0.001 vs control). In the experiments with conduction block, the increment of the interval between activation times proximal and distal to the lesions showed a significant correlation to the length of the lesions (r = 0.68, P < 0.05, 100-ms cycle). In two (17%) experiments, sustained regular tachycardias were induced with reentrant activation patterns around the lesions line. In conclusion, in this acute model, atrial RF lesions with intact tissue gaps of 3 mm between them interrupt conduction occasionally, and conduction block may be frequency dependent. Lesion overlap is required to achieve complete conduction block lines. Tachycardias with reentrant activation patterns around a lesions line may be induced. [source]