Atrazine Degradation (atrazine + degradation)

Distribution by Scientific Domains


Selected Abstracts


Contribution of ethylamine degrading bacteria to atrazine degradation in soils

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2006
Daniel Smith
Abstract Bacterial communities that cooperatively degrade atrazine commonly consist of diverse species in which the genes for atrazine dechlorination and dealkylation are variously distributed among different species. Normally, the first step in degradation of atrazine involves dechlorination mediated by atzA, followed by stepwise dealkylation to yield either N -ethylammelide or N -isopropylammelide. As the liberated alkylamine moieties are constituents of many organic molecules other than atrazine, it is possible that a large number of alkylamine-degrading bacteria other than those previously described might contribute to this key step in atrazine degradation. To examine this hypothesis, we isolated 82 bacterial strains from soil by plating soil water extracts on agar media with ethylamine as a sole carbon source. Among the relatively large number of isolates, only 3 were able to degrade N -ethylammelide, and in each case were shown to carry the atzB gene and atzC genes. The isolates, identified as Rhizobium leguminosarum, Flavobacterium sp., and Arthrobacter sp., were all readily substituted into an atrazine-degrading consortium to carry out N -ethylammelide degradation. The distribution of these genes among many different species in the soil microbial population suggests that these genes are highly mobile and over time may lead to generation of various atrazine-degrading consortia. [source]


atz gene expressions during atrazine degradation in the soil drilosphere

MOLECULAR ECOLOGY, Issue 4 2010
C. MONARD
Abstract One of the various ecosystemic services sustained by soil is pollutant degradation mediated by adapted soil bacteria. The pathways of atrazine biodegradation have been elucidated but in situ expression of the genes involved in atrazine degradation has yet to be demonstrated in soil. Expression of the atzA and atzD genes involved in atrazine dechlorination and s -triazine ring cleavage, respectively, was investigated during in situ degradation of atrazine in the soil drilosphere and bulked samples from two agricultural soils that differed in their ability to mineralize atrazine. Interestingly, expression of the atzA gene, although present in both soils, was not detected. Atrazine mineralization was greatest in Epoisses soil, where a larger pool of atzD mRNA was consistently measured 7 days after atrazine treatment, compared with Vezin soil (146 vs. 49 mRNA per 10616S rRNA, respectively). Expression of the atzD gene varied along the degradation time course and was profoundly modified in soil bioturbated by earthworms. The atzD mRNA pool was the highest in the soil drilosphere (casts and burrow-linings) and it was significantly different in burrow-linings compared with bulk soil (e.g. 363 vs. 146 mRNA per 10616S rRNA, 7 days after atrazine treatment in Epoisses soil). Thus, consistent differences in atrazine mineralization were demonstrated between the soil drilosphere and bulk soil. However, the impact of bioturbation on atrazine mineralization depended on soil type. Mineralization was enhanced in casts, compared with bulk soil, from Epoisses soil but in burrow-linings from Vezin soil. This study is the first to report the effects of soil bioturbation by earthworms on s -triazine ring cleavage and its spatial variability in soil. [source]