Home About us Contact | |||
Atomic Structure (atomic + structure)
Selected AbstractsAtomic Structure and Electrical Properties of In(Te) Nanocontacts on CdZnTe(110) by Scanning Probe MicroscopyADVANCED FUNCTIONAL MATERIALS, Issue 2 2010Gili Cohen-Taguri Abstract Understanding complex correlations between the macroscopic device performance (largely dependent on the character of the metal,semiconductor contact) and the metallurgy of contact formation on the atomic level in cadmium zinc telluride (CdZnTe) radiation detectors remains a formidable challenge. In this work, an effort towards bridging that macro,nano knowledge gap is made by conducting a series of controlled experiments aimed at correlating electrical properties of the In contact to n-type CdZnTe(110) surface with the step-by-step process of contact formation. This can only be achieved by using high spatial resolution techniques, capable of conducting highly localized measurements on the nano- and sub-nanoscale, such as scanning probe microscopy. Scanning tunneling microscopy is used in situ to monitor the behavior of various In atom coverages on an atomically flat and ordered CdZnTe surface under well-controlled molecular beam epitaxial conditions in ultra-high vacuum. Electrical derivatives of atomic force microscopy are used to measure the electrical contact properties, such as contact potential difference and spreading resistance in torsion resonance tunneling mode. It is concluded that In atoms preferentially reacted with Te atomic-rows already at room temperature, forming nanometric patches of indium,telluride Schottky-type contacts. The methods developed in this study, in terms of both nanocontact fabrication and characterization (especially in terms of electrical properties) should benefit basic and applied research of any metal,semiconductor system. [source] Molecular Dynamics Simulations of Amorphous Si,C,N Ceramics: Composition Dependence of the Atomic StructureJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2003Nicoletta Resta We have performed classical molecular dynamics simulations of amorphous Si,C,N materials. The dependence of the local order and of the microstructure on the chemical composition was investigated. Our simulations show that for a stoichiometric nitrogen/silicon ratio equal to or higher than 4/3, the amorphous ceramic separates into different amorphous domains, namely C-rich, SiN-rich, and SiC-rich phases. Below this ratio, the material is composed of mixed structures, homogeneously spread within the material. For a very particular composition range, we found that carbon atoms crystallize into monoatomic graphitic layers surrounding the SiN-rich domains. [source] Resolving the Atomic Structure of Vanadia Monolayer Catalysts: Monomers, Trimers, and Oligomers on Ceria,ANGEWANDTE CHEMIE, Issue 43 2009Martin Baron Neu unter die Lupe genommen: Die Strukturen Vanadyl-terminierter Monomere, Trimere (siehe Bild) und Oligomere auf einer CeO2(111)-Oberfläche wurden mit einer Kombination hochentwickelter experimenteller und theoretischer Methoden in atomarer Auflösung untersucht. Die CeO2 -Oberfläche stabilisiert Vanadiumoxidspezies im Oxidationszustand +5, die die Oberfläche benetzen und chemisch reduzieren und eine wichtige Rolle für die Reaktivität von CeO2 -fixiertem Vanadiumoxid in Oxidationsreaktionen spielen dürften. [source] Local 3D Real Space Atomic Structure of the Simple Icosahedral Ho11Mg15Zn74 Quasicrystal from PDF Data.CHEMINFORM, Issue 7 2004S. Bruehne Abstract For Abstract see ChemInform Abstract in Full Text. [source] Atomic Structures and Electrical Properties of ZnO Grain BoundariesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2007Yukio Sato Various properties of ceramics can be significantly influenced by the presence of grain boundaries. The influence on the properties is closely related to the grain-boundary atomic structures. As different grain boundaries have different atomic structure, different grain boundaries have different influence on the properties. It is difficult to examine the atomic structure and properties of individual grain boundaries in ceramics. In order to understand the atomic,structure,property relationships, well-defined single grain boundaries should be characterized. In the present paper, we review our recent results on the investigations of atomic structures and electrical properties of ZnO single grain boundaries. The relationships between the atomic structures and the electrical properties were investigated using ZnO bicrystals, whose grain-boundary orientation relationship and grain-boundary planes can be arbitrarily controlled. The discussion focuses on the microscopic origin of nonlinear current,voltage (I,V) characteristics across ZnO grain boundaries. High-resolution transmission electron microscopy (HRTEM) observations and lattice-statics calculations revealed the atomic structures of the undoped ZnO [0001] ,7 and ,49 grain boundaries, enabling a comparison between coincidence site lattice (CSL) boundaries with small and large periodicity. These grain boundaries contained the common structural units (SUs) featuring atoms with coordination numbers that are unusual in ZnO. The ,49 boundary was found to have characteristic arrangement of the SUs, where two kinds of the SUs are alternatively formed. It is considered that the characteristic arrangement was formed to effectively relax the local strain in the vicinity of the boundary. Such a relaxation of local strain is considered to be one of dominant factors to determine the SU arrangements along grain boundaries. I,V measurements of the undoped ZnO bicrystals showed linear I,V characteristics. Although the coordination and bond lengths of atoms in the grain boundaries differ from those in the bulk crystal, this does apparently not generate deep unoccupied states in the band gap. This indicates that atomic structures of undoped ZnO grain boundaries are not responsible for the nonlinear I,V characteristics of ZnO ceramics. On the other hand, the nonlinear I,V characteristic appeared when doping the boundaries with Pr. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of Pr-doped boundaries revealed that Pr segregates to specific atomic columns, substituting Zn at the boundary. However, the Pr itself was not the direct origin of the nonlinear I,V characteristics, as the Pr existed in the three-plus state and would not produce acceptor states in the boundary. First-principles calculations revealed that Pr doping instead promotes the formations of acceptor-like native defects, such as Zn vacancies. We believe that such acceptor-like native defects are microscopic origin of the nonlinear I,V characteristics. Investigations of various types of grain boundaries in the Pr and Co-codoped ZnO bicrystals indicated that the amounts of Pr segregation and the nonlinear I,V characteristics significantly depend on the grain-boundary orientation relationship. Larger amount of Pr segregation and, as a result, higher nonlinearity in I,V characteristics was obtained for incoherent boundaries. This indicates that Pr doping to incoherent boundaries is one of the guidelines to design the single grain boundaries with highly nonlinear I,V characteristics. Finally, a Pr and Co-codoped bicrystal with an incoherent boundary was fabricated to demonstrate a highly nonlinear I,V characteristic. This result indicates that ZnO single-grain-boundary varistors can be designed by controlling grain-boundary atomic structures and fabrication processes. Summarizing, our work firstly enabled us to gain a deeper understanding for the atomic structure of ZnO grain boundaries. Secondly, we obtained important insight into the origin of nonlinear I,V characteristics across the ZnO grain boundaries. And, finally, based on these results, we demonstrated the potential of this knowledge for designing and fabricating ZnO single-grain-boundary varistors. [source] Atomic structure of pyramidal defects in GaN:Mg: Influence of annealingPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 7 2006Z. Liliental-Weber Abstract The atomic structure of the characteristic defects (Mg-rich hexagonal pyramids) in p-doped bulk and MOCVD GaN:Mg thin films grown with Ga polarity was determined at atomic resolution by direct reconstruction of the scattered electron wave in a transmission electron microscope. Small cavities were present inside the defects, confirmed also with positron annihilation. The inside walls of the cavities were covered by GaN of reverse polarity compared to the matrix. Annealing of the MOCVD layers lead to slight increase of the defect size and an increase of the room temperature photoluminescence intensity. Positron annihilation confirms presence of vacancy clusters of different sizes triggered by the Mg doping in as-grown samples and decrease of their concentration upon annealing at 900 and 1000 °C. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Atomic structure and positron lifetime in the metallic glass Zr55Cu30Ni5Al10PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 10 2007K. Sugita Abstract Zr-based metallic glasses have superior characteristics such as mechanical strength, corrosion resistance and precision casting ability. From positron lifetime measurements, a negative temperature dependence of the mean positron lifetime above room temperature was reported and ascribed to the presence of shallow traps. However, the trapping sites remain unknown under the present circumstances. To get a further understanding of the experimental positron lifetime value, the positron density distribution and the lifetime in the Zr-based metallic glass Zr55Cu30Ni5Al10 have been calculated. The calculation shows that the positrons are annihilated inhomogeneously and most positrons are annihilated preferentially around Cu/Al. These results indicate that the positron lifetime not exactly reflects the total free volume. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Atomic structure of the cross-, spine of islet amyloid polypeptide (amylin)PROTEIN SCIENCE, Issue 9 2008Jed J.W. Wiltzius Abstract Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. Although the cellular toxicity of IAPP has been established, the structure of the fibrillar form found in these deposits is unknown. Here we have crystallized two segments from IAPP, which themselves form amyloid-like fibrils. The atomic structures of these two segments, NNFGAIL and SSTNVG, were determined, and form the basis of a model for the most commonly observed, full-length IAPP polymorph. [source] Removing bias from solvent atoms in electron density mapsJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2008Eric N. Brown Atomic structures of proteins determined via protein crystallography contain numerous solvent atoms. The experimental data for the determination of a water molecule's O-atom position is often a small contained blob of unidentified electron density. Unfortunately, the nature of crystallographic refinement lets poorly placed solvent atoms bias the future refined positions of all atoms in the crystal structure. This research article presents the technique of omit-maps applied to remove the bias introduced by poorly determined solvent atoms, enabling the identification of incorrectly placed water molecules in partially refined crystal structures. A total of 160 protein crystal structures with 45,912 distinct water molecules were processed using this technique. Most of the water molecules in the deposited structures were well justified. However, a few of the solvent atoms in this test data set changed appreciably in position, displacement parameter or electron density when fitted to the solvent omit-map, raising questions about how much experimental support exists for these solvent atoms. [source] Local 3D real space atomic structure of the simple icosahedral Ho11Mg15Zn74 quasicrystal from PDF dataCRYSTAL RESEARCH AND TECHNOLOGY, Issue 12 2003S. Brühne Abstract We present a new complementary strategy to quasicrystalline structure determination: The local atomic structure of simple icosahedral (si) Ho11Mg15Zn74 [a(6D) = 5.144(3)Å in a sphere of up to r = 17Å was refined using the atomic pair distribution function (PDF) from in-house X-ray powder diffraction data (MoK,1, Qmax = 13.5Å,1; R = 20.4%). The basic building block is a 105-atom Bergman-Cluster {Ho8Mg12Zn85}. Its center is occupied by a Zn atom , in contrast to a void in face centred icosahedral (fci) Ho9Mg26Zn65. The center is then surrounded by another 12 Zn atoms, forming an icosahedron (1st shell). The 2nd shell is made up of 8 Ho atoms arranged on the vertices of a cube which in turn is completed to a pentagon dodecahedron by 12 Mg atoms, the dodecahedron then being capped by 12 Zn atoms. The 3rd shell is a distorted soccer ball of 60 Zn atoms, reflecting the higher Zn content of the si phase compared to the fci phase. In our model, 7% of all atoms are situated in between the clusters. The model corresponds to a hypothetical 1/1-approximant of the icosahedral (i) phase. The local coordinations of the single atoms are of a much distorted Frank-Kasper type and call to mind those present in 0/1-Mg2Zn11. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Application of Synchrotron Radiation Techniques for Model Validation of Advanced Structural Materials,ADVANCED ENGINEERING MATERIALS, Issue 6 2009Annick Froideval Abstract Synchrotron radiation techniques represent powerful tools to characterize materials down to the nanometer level. This paper presents a survey of the state-of-the-art synchrotron-based techniques which are particularly well-suited for investigating materials properties. Complementary X-ray absorption techniques such as extended X-ray absorption fine structure (EXAFS), X-ray magnetic circular dichroism (XMCD), photoemission electron microscopy (PEEM) are used to address the individual local atomic structure and magnetic moments in Fe,Cr model systems. The formation of atomic clusters/precipitates in such systems is also investigated by means of scanning transmission X-ray microscopy (STXM). Such advanced analytical techniques can not only offer valuable structural and magnetic information on such systems, they can also serve for validating computational calculations performed at different time and length scales which can help improve materials lifetime predictions. [source] Structure, reactivity and spectroscopic properties of minerals from lateritic soils: insights from ab initio calculationsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2007E. Balan Summary We review here some recent applications of ab initio calculations to the modelling of spectroscopic and energetic properties of minerals, which are key components of lateritic soils or govern their geochemical properties. Quantum mechanical ab initio calculations are based on density functional theory and density functional perturbation theory. Among the minerals investigated, zircon is a typical resistant primary mineral. Its resistance to weathering is at the origin of the peculiar geochemical behaviour of Zr, an element often used in mass balance calculations of continental weathering. Numerical modelling gives a unique picture of the origin of the chemical durability and radiation-induced amorphization of zircon. We also present several applications of ab initio calculations to the description of properties of secondary minerals, such as kaolinite-group minerals and gibbsite. Special attention is given to the calculation of infrared and Raman spectra. Surface properties and particle shape are major properties of finely-divided materials such as clay minerals. We show how theoretical modelling of infrared spectroscopic data provides information on natural samples at both the microscopic (atomic structure) and macroscopic (particle shape) length-scale. The systematic comparison of experimental and theoretical data significantly improves our understanding of mineral transformations during soil formation and evolution in lateritic environments. [source] Advancements in the Search for Superhard Ultra-Incompressible Metal Borides,ADVANCED FUNCTIONAL MATERIALS, Issue 22 2009Jonathan B. Levine Abstract Dense transition metal borides have recently been identified as superhard materials that offer the possibility of ambient pressure synthesis compared to the conventional high pressure, high temperature approach. This feature article begins with a discussion of the relevant physical properties for this class of compounds, followed by a summary of the synthesis and properties of several transition metal borides. A strong emphasis is placed on correlating mechanical properties with electronic and atomic structure of these materials in an effort to better predict new superhard compounds. It concludes with a perspective of future research directions, highlighting some recent results and presenting several new ideas that remain to be tested. [source] Aliovalent Doping for Improved Battery Performance: Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 7 2009Mater. Lithium metal phosphate olivines have emerged as important storage electrodes in batteries for electric vehicles and other applications addressing global issues of energy supply and climate change. On page 1060, Meethong et al. use controlled aliovalent solute doping to tailor the defect and atomic structure in olivines, and demonstrate the resulting impact on physical and electrochemical properties. [source] Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and OptoelectronicsADVANCED MATERIALS, Issue 22 2010Goki Eda Abstract Chemically derived graphene oxide (GO) possesses a unique set of properties arising from oxygen functional groups that are introduced during chemical exfoliation of graphite. Large-area thin-film deposition of GO, enabled by its solubility in a variety of solvents, offers a route towards GO-based thin-film electronics and optoelectronics. The electrical and optical properties of GO are strongly dependent on its chemical and atomic structure and are tunable over a wide range via chemical engineering. In this Review, the fundamental structure and properties of GO-based thin films are discussed in relation to their potential applications in electronics and optoelectronics. [source] Local atomic structure in tetragonal pure ZrO2 nanopowdersJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2010Leandro M. Acuña The local atomic structures around the Zr atom of pure (undoped) ZrO2 nanopowders with different average crystallite sizes, ranging from 7 to 40,nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2 nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr,O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye,Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to the z direction; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments. [source] ReX: a computer program for structural analysis using powder diffraction dataJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3 2009Mauro Bortolotti Multi-platform software has been developed for the analysis of powder diffraction data, with particular focus on structure solution. The program provides a Rietveld optimization engine, with the possibility of refining parameters describing both the sample and the instrument model. Geometric constraints such as rigid fragments and torsion angles can be defined for the atomic structure, to reduce the number of degrees of freedom of the model. An innovative hierarchical description of the asymmetric unit has been adopted, which allows, in principle, the definition of arbitrarily complex geometric relationships. Additionally, global optimization algorithms may be used in place of the standard nonlinear least squares, when particularly challenging problems are being faced. [source] Aspects of the modelling of the radial distribution function for small nanoparticlesJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 6 2007Vladimir I. Korsunskiy An approach to modelling radial distribution functions (RDFs) of nanoparticle samples over a wide range of interatomic distances is presented. Two different types of contribution to the model RDF are calculated. The first explicitly reflects the structure of the nanoparticle parts with more or less crystalline atomic structure. It can be calculated precisely and contains comparatively sharp peaks, which are produced by the set of discrete interatomic distances. The second includes RDF contributions from distances between weakly correlated atoms positioned within different nanoparticles or within different parts of a nanoparticle model. The calculation is performed using the approximation of a uniform distribution of atoms and utilizes the ideas of the characteristic functions of the particle shape known in small-angle scattering theory. This second RDF contribution is represented by slowly varying functions of interatomic distance r. The relative magnitude of this essential part of the model RDF increases with increasing r compared with the part that represents the ordered structure. The method is applied to test several spherical and core/shell models of semiconductor nanoparticles stabilized with organic ligands. The experimental RDFs of ZnSe and CdSe/ZnS nanoparticle samples were obtained by high-energy X-ray diffraction at beamline BW5, HASYLAB, DESY. The ZnSe nanoparticles have a spherical core with approximately 26,Å diameter and zincblende structure. The RDF of the CdSe/ZnS nanoparticle sample shows resolved peaks of the first- and the second-neighbour distances characteristic for CdSe (2.62 and 4.27,Å) and for ZnS (2.33 and 3.86,Å) and for the first time clearly confirms the presence of CdSe and ZnS nanophases in such objects. The diameters of the CdSe and ZnS spherical cores are estimated as 27 and 15,Å. CdSe and ZnS are present in the sample for the most part as independent nanoparticles. A smaller amount of ZnS forms an irregularly shaped shell around the CdSe cores, which consists of small independently oriented ZnS particles. [source] CMPZ, an algorithm for the efficient comparison of periodic structuresJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2006R. Hundt The systematic comparison of the atomic structure of solid compounds has become an important task in crystallography, chemistry, physics and materials science, in particular in the context of structure prediction and structure determination of crystalline solids. In this work, an efficient and robust algorithm for the comparison of periodic structures is presented, which is based on the mapping of the point patterns of the two structures into each other. This algorithm has been implemented as the module CMPZ in the structure visualization and analysis program KPLOT. [source] X-ray absorption spectroscopy to watch catalysis by metalloenzymes: status and perspectives discussed for the water-splitting manganese complex of photosynthesisJOURNAL OF SYNCHROTRON RADIATION, Issue 1 2003Holger Dau Understanding structure,function relations is one of the main interests in the molecular biosciences. X-ray absorption spectroscopy of biological samples (BioXAS) has gained the status of a useful tool for characterization of the structure of protein-bound metal centers with respect to the electronic structure (oxidation states, orbital occupancies) and atomic structure (arrangement of ligand atoms). Owing to progress in the performance characteristics of synchrotron radiation sources and of experimental stations dedicated to the study of (ultra-dilute) biological samples, it is now possible to carry out new types of BioXAS experiments, which have been impracticable in the past. Of particular interest are approaches to follow biological catalysis at metal sites by characterization of functionally relevant structural changes. In this article, the first steps towards the use of BioXAS to `watch' biological catalysis are reviewed for the water-splitting reactions occurring at the manganese complex of photosynthesis. The following aspects are considered: the role of BioXAS in life sciences; methodological aspects of BioXAS; catalysis at the Mn complex of photosynthesis; combination of EXAFS and crystallographic information; the freeze-quench technique to capture semi-stable states; time-resolved BioXAS using a freeze-quench approach; room-temperature experiments and `real-time' BioXAS; tasks and perspectives. [source] Measurements of photon interference X-ray absorption fine structure (,XAFS)JOURNAL OF SYNCHROTRON RADIATION, Issue 2 2001Larc Tröger Experimental data are presented which demonstrate the existence of a fine structure in extended X-ray absorption spectra due to interference effects in the initial photon state (,XAFS). Interference occurs between the incident electromagnetic wave and its coherently scattered waves from neighboring atoms. Using fine platinum and tungsten powders as well as polycrystalline platinum foil, ,XAFS was measured in high-precision absorption experiments at beamline X1 at HASYLAB/DESY over a wide energy range. ,XAFS is observed below and above absorption-edge positions in both transmission and total-electron-yield detection. Based on experimental data it is shown that ,XAFS is sensitive to geometric atomic structure. Fourier-transformed ,XAFS data carry information, comparable with that of EXAFS, about the short-range-order structure of the sample. Sharp structures occur in ,XAFS when a Bragg backscattering condition of the incident X-rays is fulfilled. They allow precise measurement of long-range-order structural information. Measured data are compared with simulations based on ,XAFS theory. Although ,XAFS structures are similarly observed in two detection techniques, the importance of scattering off the sample for the measurements needs to be investigated further. Disentangling ,XAFS, multielectron photoexcitations and atomic XAFS in high-precision measurements close to absorption edges poses a challenge for future studies. [source] Atomic Structures and Electrical Properties of ZnO Grain BoundariesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2007Yukio Sato Various properties of ceramics can be significantly influenced by the presence of grain boundaries. The influence on the properties is closely related to the grain-boundary atomic structures. As different grain boundaries have different atomic structure, different grain boundaries have different influence on the properties. It is difficult to examine the atomic structure and properties of individual grain boundaries in ceramics. In order to understand the atomic,structure,property relationships, well-defined single grain boundaries should be characterized. In the present paper, we review our recent results on the investigations of atomic structures and electrical properties of ZnO single grain boundaries. The relationships between the atomic structures and the electrical properties were investigated using ZnO bicrystals, whose grain-boundary orientation relationship and grain-boundary planes can be arbitrarily controlled. The discussion focuses on the microscopic origin of nonlinear current,voltage (I,V) characteristics across ZnO grain boundaries. High-resolution transmission electron microscopy (HRTEM) observations and lattice-statics calculations revealed the atomic structures of the undoped ZnO [0001] ,7 and ,49 grain boundaries, enabling a comparison between coincidence site lattice (CSL) boundaries with small and large periodicity. These grain boundaries contained the common structural units (SUs) featuring atoms with coordination numbers that are unusual in ZnO. The ,49 boundary was found to have characteristic arrangement of the SUs, where two kinds of the SUs are alternatively formed. It is considered that the characteristic arrangement was formed to effectively relax the local strain in the vicinity of the boundary. Such a relaxation of local strain is considered to be one of dominant factors to determine the SU arrangements along grain boundaries. I,V measurements of the undoped ZnO bicrystals showed linear I,V characteristics. Although the coordination and bond lengths of atoms in the grain boundaries differ from those in the bulk crystal, this does apparently not generate deep unoccupied states in the band gap. This indicates that atomic structures of undoped ZnO grain boundaries are not responsible for the nonlinear I,V characteristics of ZnO ceramics. On the other hand, the nonlinear I,V characteristic appeared when doping the boundaries with Pr. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of Pr-doped boundaries revealed that Pr segregates to specific atomic columns, substituting Zn at the boundary. However, the Pr itself was not the direct origin of the nonlinear I,V characteristics, as the Pr existed in the three-plus state and would not produce acceptor states in the boundary. First-principles calculations revealed that Pr doping instead promotes the formations of acceptor-like native defects, such as Zn vacancies. We believe that such acceptor-like native defects are microscopic origin of the nonlinear I,V characteristics. Investigations of various types of grain boundaries in the Pr and Co-codoped ZnO bicrystals indicated that the amounts of Pr segregation and the nonlinear I,V characteristics significantly depend on the grain-boundary orientation relationship. Larger amount of Pr segregation and, as a result, higher nonlinearity in I,V characteristics was obtained for incoherent boundaries. This indicates that Pr doping to incoherent boundaries is one of the guidelines to design the single grain boundaries with highly nonlinear I,V characteristics. Finally, a Pr and Co-codoped bicrystal with an incoherent boundary was fabricated to demonstrate a highly nonlinear I,V characteristic. This result indicates that ZnO single-grain-boundary varistors can be designed by controlling grain-boundary atomic structures and fabrication processes. Summarizing, our work firstly enabled us to gain a deeper understanding for the atomic structure of ZnO grain boundaries. Secondly, we obtained important insight into the origin of nonlinear I,V characteristics across the ZnO grain boundaries. And, finally, based on these results, we demonstrated the potential of this knowledge for designing and fabricating ZnO single-grain-boundary varistors. [source] Effect of Interface Structure on the Microstructural Evolution of CeramicsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2006Wook Jo The interface atomic structure was proposed to have a critical effect on microstructure evolution during sintering of ceramic materials. In liquid-phase sintering, spherical grains show normal grain growth behavior without exception, while angular grains often grow abnormally. The coarsening process of spherical grains with a disordered or rough interface atomic structure is diffusion-controlled, because there is little energy barrier for atomic attachments. On the other hand, kink-generating sources such as screw dislocations or two-dimensional (2-D) nuclei are required for angular grains having an ordered or singular interface structure. Coarsening of angular grains based on a 2-D nucleation mechanism could explain the abnormal grain growth behavior. It was also proposed that a densification process is closely related to the interface atomic structure. Enhanced densification by carefully chosen additives during solid state sintering was explained in terms of the grain-boundary structural transition from an ordered to a disordered open structure. [source] Hyperfine structure of hydrogen and geoniumLASER PHYSICS LETTERS, Issue 2 2004A.V. Andreev Abstract The self-consistent theory of hyperfine atomic structure is developed. The theory is based on Lorentz and gauge invariant equation for action of spin 1/2 particle. The specific feature of proposed equation for action (or Lagrangian) is that it is enable to introduce the three material constants: mass m0, charge q, and magneton (i.e. magnitude of magnetic moment) ,. The analytically tractable solutions of the wave equation for the electron motion in Coulomb field and electron motion in uniform magnetic field are found. In both cases the calculated spectra include the hyperfine splitting that is agreed well with the experimentally observed spectra. The calculated frequencies of 8(12)d3/2 , 8(12)d5/2 transitions in hydrogen atom are compared with the results of experimental measurements by the highprecision spectroscopy methods. It is shown that the results of calculations are in good agreement with the experimentally measured data. (© 2004 by HMS Consultants. Inc. Published exclusively by WILEY-VCH Verlag GmbH & Co.KGaA) [source] Anomalous scattering and isomorphous replacement in X-ray diffuse scattering holographyPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2007Kopecký Abstract Two concepts of X-ray diffuse scattering holography resulting in local atomic structure are presented. The first one uses the anomalous scattering near the absorption edge of a selected element. The second one is based on the variation of atomic scattering factor due to the isomorphous replacement of a selected atom in the structure by another one with different scattering properties. Feasibility of both concepts was demonstrated experimentally on a RbCl single crystal and GaMnAs epitaxial layer. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Quantitative evaluation of the atomic structure of defects and composition fluctuations at the nanometer scale inside InGaN/GaN heterostructuresPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 12 2004P. Ruterana Abstract Investigation is carried out by high-resolution electron microscopy on threading dislocations using data treatments with procedures that allow the extraction of the most likely atomic configurations. We also report In composition fluctuations inside InGaN/GaN quantum wells by coupling HRTEM, image simulation and Finite Element Modelling (FEM) of the thin foil relaxation. The results show that the indium content may be close to x = 1.0 in the clusters and this is much higher that was previously suggested by 2D FEM modelling. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] GaN growth on LiNbO3 (0001) , a first-principles simulationPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7-8 2010Simone Sanna Abstract The growth of GaN on the LiNbO3 (0001) surface is simulated by means of first-principles total-energy calculations. Firstly the adsorption of single N and Ga monolayers is investigated and then the layer-by-layer growth of GaN on the polar substrate within different orientations is modeled. While adsorbing a N layer does not heavily affect the substrate morphology, the adsorption of a Ga layer causes a rearrangement of the atomic structure. Furthermore the N layer is more strongly bound to the substrate than the Ga layer. On the basis of our results, we propose a microscopic model for the GaN/LiNbO3 interface. The GaN and LiNbO3 (0001) planes are parallel, but rotated by 30° each other, with in-plane epitaxial relationship [100]GaN II [110]. In this way the (0001) calculated in-plane lattice mismatch between GaN and LiNbO3 is minimal and equal to 6.79% of the GaN lattice constant. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Determination of the Mg occupation site in MOCVD- and MBE-grown Mg-doped InN using X-ray absorption fine-structure measurementsPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2008Takao Miyajima Abstract We analyzed the atomic structure around Mg atoms in MOCVD- and MBE-grown Mg-doped InN using Mg K-edge X-ray absorption fine-structure (XAFS) measurements. Our experimental data closely fit to the simulated data in which Mg atoms occupy the substitutional sites of In atoms. From this result, we conclude that Mg atoms essentially occupy not N atoms sites but In atoms sites, meaning that Mg atoms can act as acceptors in InN. We believe that observations of p-type conductivity are prevented by problems such as carrier compensation and electron accumulation at the surface. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Positron annihilation at grain boundaries in metalsPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 10 2007J. Kuriplach Abstract Positron annihilation at selected tilt and twist grain boundaries in iron and nickel is examined theoretically. First the atomic structure of studied perfect and imperfect grain boundaries is obtained using molecular dynamics simulations. Characteristics of positrons trapped at such GBs are then calculated employing the atomic superposition method and are related to free volumes found at GBs. It is observed that in some cases vacancies introduced into ideal grain boundaries do not result in an increase of the positron lifetime. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Design of a minimal protein oligomerization domain by a structural approachPROTEIN SCIENCE, Issue 12 2000Peter Burkhard Abstract Because of the simplicity and regularity of the ,-helical coiled coil relative to other structural motifs, it can be conveniently used to clarify the molecular interactions responsible for protein folding and stability. Here we describe the de novo design and characterization of a two heptad-repeat peptide stabilized by a complex network of inter- and intrahelical salt bridges. Circular dichroism spectroscopy and analytical ultracentrifugation show that this peptide is highly ,-helical and 100% dimeric under physiological buffer conditions. Interestingly, the peptide was shown to switch its oligomerization state from a dimer to a trimer upon increasing ionic strength. The correctness of the rational design principles used here is supported by details of the atomic structure of the peptide deduced from X-ray crystallography. The structure of the peptide shows that it is not a molten globule but assumes a unique, native-like conformation. This de novo peptide thus represents an attractive model system for the design of a molecular recognition system. [source] |