Home About us Contact | |||
Atlantic Populations (atlantic + population)
Selected AbstractsCombined effects of elevated temperatures and reduced leaf litter quality on the life-history parameters of a saprophagous macroarthropodGLOBAL CHANGE BIOLOGY, Issue 1 2009JEAN-FRANCOIS DAVID Abstract Because soil macroinvertebrates strongly modify decomposition processes, it is important to know how their abundance will respond to global change. We investigated in laboratory microcosms, the effects of elevated temperatures and reduced leaf litter quality on the life-history traits of a saprophagous macroarthropod (development time, growth, survival and reproduction). Millipedes (Polydesmus angustus) from an Atlantic temperate forest were reared throughout their life cycle (,16 months) under two temperature regimes differing on average by 3.3 °C; in a factorial design, they were fed either on Atlantic leaf litter or on Mediterranean leaf litter with a higher C : N ratio; humidity was consistently high. The components of the population growth rate (r) were affected positively by the temperature rise and negatively by the switch from Atlantic to Mediterranean leaf litter. When both treatments were combined, litter effects offset temperature effects. These results show that the short-term response of saprophagous macroarthropods to warming is positive but depends on the availability of high-quality litter, which is difficult to predict in the global change context. In a parallel experiment, conspecific millipedes from a Mediterranean population, which have evolved for a long time in a warmer climate and on poor-quality litter, were reared at elevated temperatures on Mediterranean leaf litter. All components of r were higher than in the Atlantic population under the same conditions. This suggests that in the longer term, macroarthropods can overcome detrimental trophic interactions. Based on our study and the literature, we conclude that for decades the positive effects of warming on saprophagous macrofauna should exceed the negative effects of changes in litter quality. The abundance of those organisms in temperate forests could increase, which is confirmed by latitudinal patterns in Europe. Studies aimed at predicting the impacts of global change on decomposition will need to consider interactions with soil macroinvertebrates. [source] Adaptation of reef and mangrove sponges to stress: evidence for ecological speciation exemplified by Chondrilla caribensis new species (Demospongiae, Chondrosida)MARINE ECOLOGY, Issue 2007Klaus Rützler Abstract Sponges (Porifera) in mangroves have adapted to a wide range of environmental parameters except for extended periods of exposure to freshwater or air. Many marine mangrove islands are located in the shallow backwaters of coral reefs in Belize and elsewhere in the Caribbean and have a mean tidal range of only 15 cm. They are densely populated by sponges, mostly attached to subtidal red-mangrove stilt roots and peat banks lining tidal channels. Some species are endemic to mangroves, others are immigrants from nearby reefs. Mangrove endemics endure environmental hardships, such as occasional exposure to air during spring tides, temperature and salinity extremes, fine sediments, even burial in detritus. Reef immigrants into mangroves enjoy protection from spongivores that do not stray into the swamp but they eventually succumb to environmental stress. There is evidence exemplified by the common demosponge Chondrilla aff. nucula, that sponges flourishing in both mangrove and reef habitats may develop separate ecologically specialized and reproductively isolated populations. Such processes can lead to genetic modifications and thus serve as mechanisms for ecological speciation. Because Chondrilla nucula Schmidt was first described from the Mediterranean Sea, it was long suspected that the western Atlantic population may be a separate species. New morphological and molecular evidence prompt us to describe it under a new name, Chondrilla caribensis, with two ecological forms, forma caribensis from mangroves and lagoons, and forma hermatypica from open reefs. [source] Characterization of single-nucleotide polymorphism markers in the Mediterranean mussel, Mytilus galloprovincialisAQUACULTURE RESEARCH, Issue 10 2010Manuel Vera Abstract The Mediterranean mussel, Mytilus galloprovincialis, is one of the most important aquaculture species in Europe. Appropriate molecular markers are required to evaluate genetic resources and to trace genealogies in breeding programmes for improving mussel culture. Microsatellites have been commonly applied to this purpose in other species. However, Mediterranean mussel microsatellites have demonstrated high frequencies of null alleles that hamper accurate estimates of population parameters and confident parentage inferences. As alternative markers, we have characterized in silico 25 potential single-nucleotide polymorphism (SNP) markers in the Mediterranean mussel from expressed sequence tag (EST) public databases. The genotyping of SNPs was performed using a single-base extension approach. Their polymorphism was evaluated in 47 individuals from an Atlantic population. Out of the 25 potential SNPs tested, 12 were technically feasible (producing a single amplicon) and polymorphic. All were biallelic and had an unbiased heterozygosity ranging from 0.160 to 0.504. One SNP was from a mitochondrial gene. The combined potential of nuclear SNPs for parentage assignment gave an exclusion probability of a false couple of parents of 0.9471. These markers will be useful for evaluating resources and tracing genealogies in genetic breeding programmes implemented to solve the main problems of mussel culture. [source] Temperature-mediated plasticity and genetic differentiation in egg size and hatching size among populations of Crepidula (Gastropoda: Calyptraeidae)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010RACHEL COLLIN Offspring size is a key characteristic in life histories, reflecting maternal investment per offspring and, in marine invertebrates, being linked to mode of development. Few studies have focused explicitly on intraspecific variation and plasticity in developmental characteristics such as egg size and hatching size in marine invertebrates. We measured over 1000 eggs and hatchlings of the marine gastropods Crepidula atrasolea and Crepidula ustulatulina from two sites in Florida. A common-garden experiment showed that egg size and hatching size were larger at 23 °C than at 28 °C in both species. In C. ustulatulina, the species with significant genetic population structure in cytochrome oxidase I (COI), there was a significant effect of population: Eggs and hatchlings from the Atlantic population were smaller than those from the Gulf. The two populations also differed significantly in hatchling shape. Population effects were not significant in C. atrasolea, the species with little genetic population structure in COI, and were apparent through their marginal interaction with temperature. In both species, 60,65% of the variation in egg size and hatching size was a result of variation among females and, in both species, the population from the Atlantic coast showed greater temperature-mediated plasticity than the population from the Gulf. These results demonstrate that genetic differentiation among populations, plastic responses to variation in environmental temperature, and differences between females all contribute significantly to intraspecific variation in egg size and hatching size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 489,499. [source] Voice variance may signify ongoing divergence among black-legged kittiwake populationsBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2009HERVE MULARD Acoustic features are important for individual and species recognition. However, while dialectal variations in song characteristics have been described in many songbirds, geographical divergence in vocal features across populations has seldom been studied in birds that are not thought to have song-learning abilities. Here, we document marked differences in the vocal structure of calls of two populations of black-legged kittiwakes (Rissa tridactyla), a seabird whose call is considered as not being learned from other individuals. We found that calls vary both within and between populations. Within-population variation may convey individual identity, whereas the marked differences in frequency and temporal parameters observed between the two populations may reveal ongoing divergence among kittiwake populations. Moreover, we were unable to detect any sex signature in adult calls in a Pacific population (Middleton, Alaska), while these were detected in an Atlantic population (Hornřya, Norway), potentially affecting sexual behaviours. Despite the fact that these calls seemed to change over the reproductive season and across years, the individual signature remained fairly stable. Such vocal differences suggest that Pacific and Atlantic populations may be undergoing behavioural divergences that may reveal early stages of speciation, as is suggested by molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 289,297. [source] Population structure in the South American tern Sterna hirundinacea in the South Atlantic: two populations with distinct breeding phenologiesJOURNAL OF AVIAN BIOLOGY, Issue 4 2010Patrícia J. Faria The South American tern Sterna hirundinacea is a migratory species for which dispersal, site fidelity and migratory routes are largely unknown. Here, we used five microsatellite loci and 799,bp partial mitochondrial DNA sequences (Cytochrome b and ND2) to investigate the genetic structure of South American terns from the South Atlantic Ocean (Brazilian and Patagonian colonies). Brazilian and Patagonian colonies have two distinct breeding phenologies (austral winter and austral summer, respectively) and are under the influence of different oceanographic features (e.g. Brazil and Falklands/Malvinas ocean currents, respectively), that may promote genetic isolation between populations. Results show that the Atlantic populations are not completely panmictic, nevertheless, contrary to our expectations, low levels of genetic structure were detected between Brazilian and Patagonian colonies. Such low differentiation (despite temporal isolation of the colonies) could be explained by demographic history of these populations coupled with ongoing levels of gene flow. Interestingly, estimations of gene flow through Maximum likelihood and Bayesian approaches has indicated asymmetrical long term and contemporary gene flow from Brazilian to Patagonian colonies, approaching a source,sink metapopulation dynamic. Genetic analysis of other South American tern populations (especially those from the Pacific coast and Falklands,Malvinas Islands) and other seabird species showing similar geographical distribution (e.g. royal tern Thalasseus maximus), are fundamental in gaining a better understanding of the main processes involved in the diversification of seabirds in the southern hemisphere. [source] Vernalization requirement of wild beet Beta vulgaris ssp. maritima: among population variation and its adaptive significanceJOURNAL OF ECOLOGY, Issue 4 2002Pierre Boudry Summary 1Seven populations of Beta vulgaris ssp. maritima (wild beet) situated along a latitudinal cline were studied for their vernalization requirement and its consequences for fitness. 2Various cold regimes were applied in glasshouses and experimental gardens with plants of different ages. Three additional experimental sites (on the French Mediterranean, Atlantic and North Sea coasts) situated near three of the sampled populations, and thus including a reciprocal transplant design, were used to evaluate the influence of latitude under natural conditions. Survival and plant size were measured over 3 years. 3The vernalization requirement was greater in plants from more northern origins. The level of cold required to allow flowering overcompensated for the colder springs, so that northern plants in northern sites flowered less than southern plants in southern sites. 4Young seedlings were more difficult to vernalize than plants that had already developed vegetative rosettes. 5Differences in vernalization requirement seem to be an adaptive response to spring temperatures and season length in a particular latitude. A whole winter vernalization almost always led to flowering in the subsequent year whatever the latitude or geographical origin. 6Plants from the Atlantic and Channel coasts showed the highest lifetime reproductive success at all sites. Southern populations were better adapted to disturbed habitats as shown by their higher first-year reproductive success. The North Sea population had a lower reproductive success than the Atlantic populations, even in its native environment. [source] Ultrastructural pathology of Baltic salmon, Salmo salar L., yolk sac fry with the M74 syndromeJOURNAL OF FISH DISEASES, Issue 3 2002J Lundström The ultrastructural pathology in liver, brain, skeletal and cardiac muscle of Baltic salmon yolk sac fry with the M74 syndrome is described. In the clinical stage of disease, the main pathological findings in the liver were a depletion of glycogen, condensation of nuclear chromatin, hydropic degeneration of mitochondria and a dilation of the bile canaliculi. In the terminal stage, additional findings were lipid accumulation and myelin whorls in the cytoplasm. The rough endoplasmic reticulum (RER) was degranulated and vesiculated and in some individuals, it formed concentric membranous whorls. Mitochondria showed several additional lesions, such as matrix densities, pleomorphism and cristae abnormalities. Skeletal myocytes were degenerated, and intracellular lipid accumulation was seen in the myocardium. In the brain, an increased frequency of cells exhibiting pyknosis or karryorhexis was recorded. The cytoplasm of these cells formed an amorphous mass of moderate density. The evaluation of brain and skeletal muscle was complicated by sporadic occurrence of pathological findings in the reference material, i.e. clinically healthy Baltic salmon yolk sac fry. As these yolk sac fry are suspected to have a subclinical thiamine deficiency, reference material in future studies should include salmon yolk sac fry from Atlantic populations or originating from reared broodstock. [source] Mitochondrial DNA reveals multiple Northern Hemisphere introductions of Caprella mutica (Crustacea, Amphipoda)MOLECULAR ECOLOGY, Issue 5 2008GAIL V. ASHTON Abstract Caprella mutica (Crustacea, Amphipoda) has been widely introduced to non-native regions in the last 40 years. Its native habitat is sub-boreal northeast Asia, but in the Northern Hemisphere, it is now found on both coasts of North America, and North Atlantic coastlines of Europe. Direct sequencing of mitochondrial DNA (cytochrome c oxidase subunit I gene) was used to compare genetic variation in native and non-native populations of C. mutica. These data were used to investigate the invasion history of C. mutica and to test potential source populations in Japan. High diversity (31 haplotypes from 49 individuals), but no phylogeographical structure, was identified in four populations in the putative native range. In contrast, non-native populations showed reduced genetic diversity (7 haplotypes from 249 individuals) and informative phylogeographical structure. Grouping of C. mutica populations into native, east Pacific, and Atlantic groups explained the most among-region variation (59%). This indicates independent introduction pathways for C. mutica to the Pacific and Atlantic coasts of North America. Two dominant haplotypes were identified in eastern and western Atlantic coastal populations, indicating several dispersal routes within the Atlantic. The analysis indicated that several introductions from multiple sources were likely to be responsible for the observed global distribution of C. mutica, but the pathways were least well defined among the Atlantic populations. The four sampled populations of C. mutica in Japan could not be identified as the direct source of the non-native populations examined in this study. The high diversity within the Japan populations indicates that the native range needs to be assessed at a far greater scale, both within and among populations, to accurately assess the source of the global spread of C. mutica. [source] Nuclear and mitochondrial markers reveal distinctiveness of a small population of bottlenose whales (Hyperoodon ampullatus) in the western North AtlanticMOLECULAR ECOLOGY, Issue 11 2006MEREL L. DALEBOUT Abstract Small populations at the edge of a species' distribution can represent evolutionary relics left behind after range contractions due to climate change or human exploitation. The distinctiveness and genetic diversity of a small population of bottlenose whales in the Gully, a submarine canyon off Nova Scotia, was quantified by comparison to other North Atlantic populations using 10 microsatellites and mitrochondrial DNA (mtDNA) control region sequences (434 bp). Both markers confirmed the distinctiveness of the Gully (n = 34) from the next nearest population, off Labrador (n = 127; microsatellites ,FST= 0.0243, P < 0.0001; mtDNA ,,ST = 0.0456, P < 0.05). Maximum likelihood microsatellite estimates suggest that less than two individuals per generation move between these areas, refuting the hypothesis of population links through seasonal migration. Both males and females appear to be philopatric, based on significant differentiation at both genomes and similar levels of structuring among the sexes for microsatellites. mtDNA diversity was very low in all populations (h = 0.51, , = 0.14%), a pattern which may be due to selective sweeps associated with this species' extreme deep-diving ecology. Whaling had a substantial impact on bottlenose whale abundance, with over 65 000 animals killed before the hunt ceased in the early 1970s. Genetic diversity was similar among all populations, however, and no signal for bottlenecks was detected, suggesting that the Gully is not a relic of a historically wider distribution. Instead, this unique ecosystem appears to have long provided a stable year-round habitat for a distinct population of bottlenose whales. [source] Multiple introductions promote range expansion of the mollusc Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence dataMOLECULAR ECOLOGY, Issue 6 2006B. SIMON-BOUHET Abstract Since the 1970s, the nassariid gastropod Cyclope neritea has been extending its range north along the French Atlantic coasts from the Iberian Peninsula. This may be due to natural spread because of the recent warming of the northeastern Atlantic. However, human-mediated introductions related to shellfish culture may also be a probable explanation for this sudden range expansion. To examine these two hypotheses, we carried out a comprehensive study based on mitochondrial gene sequences (cytochrome oxidase I) of the five recently colonized French bays as well as 14 populations located in the recognized native range of the species. From a total of 594 individuals, we observed 29 haplotypes to split into three divergent clades. In the native range, we observed a low molecular diversity, strong genetic structure and agreement between geography and gene genealogies. Along the French coasts, we observed the opposite: high genetic diversity and low genetic structure. Our results show that recurrent human-mediated introductions from several geographical areas in the native range may be a source for the French Atlantic populations. However, despite the low dispersal ability of C. neritea, the isolation-by-distance pattern in France suggested that this gastropod may have been present (although unnoticed) on the French Atlantic coasts before the 1970s. As C. neritea shows characteristics of a cryptogenic species, the classification of Atlantic populations as either native or introduced is not straightforward. Cryptogenic species should be studied further to determine the status of new populations close to their recognized native range. [source] History and evolution of the arctic flora: in the footsteps of Eric HulténMOLECULAR ECOLOGY, Issue 2 2003Richard J. Abbott Abstract A major contribution to our initial understanding of the origin, history and biogeography of the present-day arctic flora was made by Eric Hultén in his landmark book Outline of the History of Arctic and Boreal Biota during the Quarternary Period, published in 1937. Here we review recent molecular and fossil evidence that has tested some of Hultén's proposals. There is now excellent fossil, molecular and phytogeographical evidence to support Hultén's proposal that Beringia was a major northern refugium for arctic plants throughout the Quaternary. In contrast, most molecular evidence fails to support his proposal that contemporary east and west Atlantic populations of circumarctic and amphi-Atlantic species have been separated throughout the Quaternary. In fact, populations of these species from opposite sides of the Atlantic are normally genetically very similar, thus the North Atlantic does not appear to have been a strong barrier to their dispersal during the Quaternary. Hultén made no detailed proposals on mechanisms of speciation in the Arctic; however, molecular studies have confirmed that many arctic plants are allopolyploid, and some of them most probably originated during the Holocene. Recurrent formation of polyploids from differentiated diploid or more low-ploid populations provides one explanation for the intriguing taxonomic complexity of the arctic flora, also noted by Hultén. In addition, population fragmentation during glacial periods may have lead to the formation of new sibling species at the diploid level. Despite the progress made since Hultén wrote his book, there remain large gaps in our knowledge of the history of the arctic flora, especially about the origins of the founding stocks of this flora which first appeared in the Arctic at the end of the Pliocene (approximately 3 Ma). Comprehensive analyses of the molecular phylogeography of arctic taxa and their relatives together with detailed fossil studies are required to fill these gaps. [source] Phylogeographical variation of chloroplast DNA in holm oak (Quercus ilex L.)MOLECULAR ECOLOGY, Issue 11 2002R. Lumaret Abstract Variation in the lengths of restriction fragments (RFLPs) of the whole chloroplast DNA molecule was studied in 174 populations of Quercus ilex L. sampled over the entire distribution of this evergreen and mainly Mediterranean oak species. By using five endonucleases, 323 distinct fragments were obtained. From the 29 and 17 cpDNA changes identified as site and length mutations, respectively, 25 distinct chlorotypes were distinguished, mapped and treated cladistically with a parsimony analysis, using as an outgroup Q. alnifolia Poech, a closely related evergreen oak species endemic to Cyprus where Q. ilex does not grow. The predominant role of Q. ilex as maternal parent in hybridization with other species was reflected by the occurrence of a single very specific lineage of related chlorotypes, the most ancestral and recent ones being located in the southeastern and in the northwestern parts of the species' geographical distribution, respectively. The lineage was constituted of two clusters of chlorotypes observed in the ,ilex' morphotyped populations of the Balkan and Italian Peninsulas (including the contiguous French Riviera), respectively. A third cluster was divided into two subclusters identified in the ,rotundifolia' morphotyped populations of North Africa, and of Iberia and the adjacent French regions, respectively. Postglacial colonization probably started from three distinct southerly refugia located in each of the three European peninsulas, and a contact area between the Italian and the Iberian migration routes was identified in the Rhône valley (France). Chlorotypes identical or related to those of the Iberian cluster were identified in the populations from Catalonia and the French Languedoc region, which showed intermediate morphotypes, and in the French Atlantic populations which possessed the ,ilex' morphotype, suggesting the occurrence of adaptive morphological changes in the northern part of the species' distribution. [source] DNA barcode discovers two cryptic species and two geographical radiations in the invasive drosophilid Zaprionus indianusMOLECULAR ECOLOGY RESOURCES, Issue 3 2008AMIR YASSIN Abstract Comparing introduced to ancestral populations within a phylogeographical context is crucial in any study aiming to understand the ecological genetics of an invasive species. Zaprionus indianus is a cosmopolitan drosophilid that has recently succeeded to expand its geographical range upon three continents (Africa, Asia and the Americas). We studied the distribution of mitochondrial DNA (mtDNA) haplotypes for two genes (CO-I and CO-II) among 23 geographical populations. mtDNA revealed the presence of two well-supported phylogenetic lineages (phylads), with bootstrap value of 100%. Phylad I included three African populations, reinforcing the African-origin hypothesis of the species. Within phylad II, a distinct phylogeographical pattern was discovered: Atlantic populations (from the Americas and Madeira) were closer to the ancestral African populations than to Eastern ones (from Madagascar, Middle East and India). This means that during its passage from endemism to cosmopolitanism, Z. indianus exhibited two independent radiations, the older (the Eastern) to the East, and the younger (the Atlantic) to the West. Discriminant function analysis using 13 morphometrical characters was also able to discriminate between the two molecular phylads (93.34 ± 1.67%), although detailed morphological analysis of male genitalia using scanning electron microscopy showed no significant differences. Finally, crossing experiments revealed the presence of reproductive barrier between populations from the two phylads, and further between populations within phylad I. Hence, a bona species status was assigned to two new, cryptic species: Zaprionus africanus and Zaprionus gabonicus, and both were encompassed along with Z. indianus and Zaprionus megalorchis into the indianus complex. The ecology of these two species reveals that they are forest dwellers, which explains their restricted endemic distribution, in contrast to their relative cosmopolitan Z. indianus, known to be a human-commensal. Our results reconfirm the great utility of mtDNA at both inter- and intraspecific analyses within the frame of an integrated taxonomical project. [source] Northern and Southern expansions of Atlantic brown trout (Salmo trutta) populations during the PleistoceneBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009MARTÍ CORTEY The phylogeography of Atlantic brown trout (Salmo trutta) was analysed using mitochondrial DNA control region complete sequences of 774 individuals from 57 locations. Additionally, the available haplotype information from 100 published populations was incorporated in the analysis. Combined information from nested clade analysis, haplotype trees, mismatch distributions, and coalescent simulations was used to characterize population groups in the Atlantic basin. A major clade involved haplotypes assigned to the Atlantic (AT) lineage, but another major clade should be considered as a distinct endemic lineage restricted to the Iberian Peninsula. The phylogeography of the Atlantic populations showed the mixed distribution of several Atlantic clades in glaciated areas of Northern Europe, whereas diverged haplotypes dominated the coastal Iberian rivers. Populations inhabiting the Atlantic rivers of southern France apparently contributed to postglacial colonization of northern basins, but also comprised the source of southern expansions during the Pleistocene. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 904,917. [source] Voice variance may signify ongoing divergence among black-legged kittiwake populationsBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2009HERVE MULARD Acoustic features are important for individual and species recognition. However, while dialectal variations in song characteristics have been described in many songbirds, geographical divergence in vocal features across populations has seldom been studied in birds that are not thought to have song-learning abilities. Here, we document marked differences in the vocal structure of calls of two populations of black-legged kittiwakes (Rissa tridactyla), a seabird whose call is considered as not being learned from other individuals. We found that calls vary both within and between populations. Within-population variation may convey individual identity, whereas the marked differences in frequency and temporal parameters observed between the two populations may reveal ongoing divergence among kittiwake populations. Moreover, we were unable to detect any sex signature in adult calls in a Pacific population (Middleton, Alaska), while these were detected in an Atlantic population (Hornřya, Norway), potentially affecting sexual behaviours. Despite the fact that these calls seemed to change over the reproductive season and across years, the individual signature remained fairly stable. Such vocal differences suggest that Pacific and Atlantic populations may be undergoing behavioural divergences that may reveal early stages of speciation, as is suggested by molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 289,297. [source] |