Home About us Contact | |||
Proposed Design Procedure (proposed + design_procedure)
Selected AbstractsDevelopment and validation of a metallic haunch seismic retrofit solution for existing under-designed RC frame buildingsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 14 2006Stefano Pampanin Abstract The feasibility and efficiency of a seismic retrofit solution for existing reinforced concrete frame systems, designed before the introduction of modern seismic-oriented design codes in the mid 1970s, is conceptually presented and experimentally investigated. A diagonal metallic haunch system is introduced at the beam,column connections to protect the joint panel zone from extensive damage and brittle shear mechanisms, while inverting the hierarchy of strength within the beam,column subassemblies and forming a plastic hinge in the beam. A complete step-by-step design procedure is suggested for the proposed retrofit strategy to achieve the desired reversal of strength hierarchy. Analytical formulations of the internal force flow at the beam,column-joint level are derived for the retrofitted joints. The study is particularly focused on exterior beam,column joints, since it is recognized that they are the most vulnerable, due to their lack of a reliable joint shear transfer mechanism. Results from an experimental program carried out to validate the concept and the design procedure are also presented. The program consisted of quasi-static cyclic tests on four exterior, , scaled, beam,column joint subassemblies, typical of pre-1970 construction practice using plain round bars with end-hooks, with limited joint transverse reinforcement and detailed without capacity design considerations. The first (control specimen) emulated the as-built connection while the three others incorporated the proposed retrofitted configurations. The experimental results demonstrated the effectiveness of the proposed solution for upgrading non-seismically designed RC frames and also confirmed the applicability of the proposed design procedure and of the analytical derivations. Copyright © 2006 John Wiley & Sons, Ltd. [source] Integrated layout design of multi-component systemINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 6 2009Jihong Zhu Abstract A new integrated layout optimization method is proposed here for the design of multi-component systems. By introducing movable components into the design domain, the components layout and the supporting structural topology are optimized simultaneously. The developed design procedure mainly consists of three parts: (i) Introduction of non-overlap constraints between components. The finite circle method (FCM) is used to avoid the components overlaps and also overlaps between components and the design domain boundaries. (ii) Layout optimization of the components and supporting structure. Locations and orientations of the components are assumed as geometrical design variables for the optimal placement while topology design variables of the supporting structure are defined by the density points. Meanwhile, embedded meshing techniques are developed to take into account the finite element mesh change caused by the component movements. (iii) Consistent material interpolation scheme between element stiffness and inertial load. The commonly used solid isotropic material with penalization model is improved to avoid the singularity of localized deformation in the presence of design dependent loading when the element stiffness and the involved inertial load are weakened by the element material removal. Finally, to validate the proposed design procedure, a variety of multi-component system layout design problems are tested and solved on account of inertia loads and gravity center position constraint. Solutions are compared with traditional topology designs without component. Copyright © 2008 John Wiley & Sons, Ltd. [source] Design and optimization of multi-band Wilkinson power dividerINTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, Issue 1 2008Nihad Dib Abstract In this paper, a general and easy procedure for designing the symmetrical Wilkinson power divider that achieves equal-power split at N arbitrary frequencies is introduced. Each quarter-wave branch in the conventional Wilkinson divider is replaced by N sections of transmission lines, and the isolation between the output ports is achieved by using N resistors. The design parameters are the characteristic impedances and lengths of the N transmission line sections, and the N isolation resistors. The even,odd modes of analysis are used to derive the design equations. Closed-form expressions, which are suitable for CAD purposes, are derived for the dual-band divider. For N , 3, closed-form expressions are not available, and therefore, the powerful particle swarm optimization method is used to obtain the design parameters. Examples of the dual-, triple-, and quad-band dividers are presented to validate the proposed design procedure, and the results are compared, wherever possible, with published results using other methods. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008. [source] Global stabilization of uncertain stochastic nonlinear time-delay systems by output feedbackINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 9 2008Peng Cui Abstract Constructive control techniques have been proposed for controlling strict feedback (lower triangular form) stochastic nonlinear systems with a time-varying time delay in the state. The uncertain nonlinearities are assumed to be bounded by polynomial functions of the outputs multiplied by unmeasured states or delayed states. The delay-independent output feedback controller making the closed-loop system globally asymptotically stable is explicitly constructed by using a linear dynamic high-gain observer in combination with a linear dynamic high-gain controller. A simulation example is given to demonstrate the effectiveness of the proposed design procedure. Copyright © 2007 John Wiley & Sons, Ltd. [source] Design of nonlinear observers with approximately linear error dynamics using multivariable Legendre polynomialsINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 15 2006Joachim Deutscher Abstract This paper presents a numerical approach to the design of nonlinear observers by approximate error linearization. By using a Galerkin approach on the basis of multivariable Legendre polynomials an approximate solution to the singular PDE of the observer design technique proposed by Kazantzis and Krener (see (Syst. Control Lett. 1998; 34:241,247; SIAM J. Control Optim. 2002; 41:932,953)) is determined. It is shown that the L2 -norm of the remaining nonlinearity in the resulting error dynamics can be made small on a specified multivariable interval in the state space. Furthermore, a linear matrix equation is derived for determining the corresponding change of co-ordinates and output injection such that the proposed design procedure can easily be implemented in a numerical software package. A simple example demonstrates the properties of the new numerical observer design. Copyright © 2006 John Wiley & Sons, Ltd. [source] |