Propagation Speed (propagation + speed)

Distribution by Scientific Domains


Selected Abstracts


Measuring bubble, drop and particle sizes in multiphase systems with ultrasound

AICHE JOURNAL, Issue 11 2004
A. H. G. Cents
Abstract A technique is developed for measurement of bubble, droplet and particle-size distributions in multiphase systems, based on the propagation speed and attenuation of ultrasound. The measurement of the size distribution of the dispersed phase in multiphase systems was desired to analyze the mass-transfer mechanism in gas-liquid-liquid and gas-liquid-solid systems. To obtain this information, both the ultrasonic velocity and the attenuation coefficient of tone-burst signals are determined for a large frequency range (typically 100 kHz , 100 MHz). From these parameters, the size distributions and the volume fraction of the different dispersed phases can be determined using a scattering model. It was shown that the interfacial area can be determined very accurately, however, for the exact size distribution of the gas bubbles in the used size range (1,3 mm) an independent gas holdup determination is required. Experiments were performed in gas-liquid, solid-liquid, and gas-liquid-solid systems. The results showed good agreement of the particle-size distribution compared to a commercial laser-scattering analyzer, both with and without gas bubbles present. Furthermore, a good agreement between the scattering model and the experiments was found in the systems that contained gas bubbles, but these results should be validated using for instance, a digital camera technique. © 2004 American Institute of Chemical Engineers AIChE J, 50: 2750,2762, 2004 [source]


Thermoelasticity with second sound,exponential stability in linear and non-linear 1-d

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 5 2002
Reinhard Racke
We consider linear and non-linear thermoelastic systems in one space dimension where thermal disturbances are modelled propagating as wave-like pulses travelling at finite speed. This removal of the physical paradox of infinite propagation speed in the classical theory of thermoelasticity within Fourier's law is achieved using Cattaneo's law for heat conduction. For different boundary conditions, in particular for those arising in pulsed laser heating of solids, the exponential stability of the now purely, but slightly damped, hyperbolic linear system is proved. A comparison with classical hyperbolic,parabolic thermoelasticity is given. For Dirichlet type boundary conditions,rigidly clamped, constant temperature,the global existence of small, smooth solutions and the exponential stability are proved for a non-linear system. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Evaluation by scanning acoustic microscopy (SAM) on glomerular lesion of IgA nephropathy

NEPHROLOGY, Issue 2001
H Kiyomoto
IgA nephropathy (IgAN) is known to commonly cause of end-stage renal failure in Japan. The glomerular lesions of IgAN have histological variations. The determination of prognosis and therapeutic strategy should be carefully done by experts because morphological information from renal biopsies using ordinary optical microscopy is usually qualitative and subjective. Moreover, the histological items for the evaluation of glomerular lesions seems to be unsatisfactory for expression of the disease condition of IgAN. The beneficial properties of scanning acoustic microscopy (SAM) include not only observation of microstructure but also quantitative measurement of acoustic propagation speed (APS), indicating the tissue elasticity. In the present study we compared the APS of glomeruli with the pathological scores that were determined by ordinary light microscopy. We used stocked human renal biopsy specimens diagnosed as IgAN (n = 12) and normal/minimal changes (n = 5). All samples were taken by renal biopsy in Kagawa Medical University Hospital during 1997,2000 under informed consent of the patients. The obtained renal tissue were immersed in 10% formalin and embedded in paraffin. A fixed specimen was consecutively cut into 4 ,m slices. One of the deparaffinized 4 ,m-specimens was directly utilized for SAM without any staining, and the others were stained with haematoxylin-eosin and Masson Trichrome for counting cell number and evaluation of collagen accumulation. For the measurement of glomerular APS, the sample line was set on the equator of the glomerulus and then scanning of the X,Z axis was carried out to obtain the interference fringes that were analysed with a computer imaging software in order to calculate the APS. In light microscopic study, pathological scores were evaluated semiquantitatively by two independent investigators who were unaware of the sample number. Glomerular lesions were scored into five grades and glomerular cell number was also counted in individual glomerulus. The computer-assisted imaging analyser Win ROOF (Mitani, Fukui, Japan) was also used for the determination of glomerular collagen content in specimens stained by Masson Trichrome. A two-dimensional image (C-mode scanning) of SAM enabled imaging of glomerulus in renal biopsy specimen compatible with findings of ordinary light microscopy without staining dye. The glomerular APS in IgAN was significantly higher than in normal/minimal changes. This alteration of glomerular APS in IgAN was positively correlated to both semiquantitative pathological scores and glomerular collagen content determined by light microscopy. However, the cell number of glomelurus did not change between IgAN and normal/minimal change. As a result, we conclude that the glomerular lesion, especially matrix expansion in IgAN, was comparable with the absolute value among specimens. Therefore, it is suggested that SAM method is a novel and useful technique for quantitative evaluation of glomerular lesion in IgAN. [source]


Dispersive properties of photonic crystal waveguide resonators

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 11 2007
T. Sünner
Abstract We have investigated the group delay and the dispersion of light propagating through photonic crystal (PhC) resonators defined in 240 nm thick GaAs membranes. The design of the resonators is based on a PhC heterostructure, which combines waveguide sections with different lattice constants along a PhC waveguide. The measurements were performed by detecting the phase shift of a microwave signal which was modulated onto the light of a tunable laser source. The group delay was found to increase linearly with the quality factor of the resonator, in good agreement with the prediction of a model where the PhC resonator is replaced by an equivalent Fabry,Perot resonator. An alternative analysis of the measurements was performed using a Hilbert transform approach. A maximum group delay of 132 ps was observed for a resonator with a quality factor of 82000. The overall length of this resonator was 10.4 ,m, resulting in a propagation speed of 7.88 × 104 m/s (c/3800). The maximum dispersion of the resonator was around 1.7 ns/nm, which is equivalent to 100 km of standard optical fiber. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium

COMMUNICATIONS ON PURE & APPLIED MATHEMATICS, Issue 5 2004
Marcello Lucia
We revisit the classical problem of speed selection for the propagation of disturbances in scalar reaction-diffusion equations with one linearly stable and one linearly unstable equilibrium. For a wide class of initial data this problem reduces to finding the minimal speed of the monotone traveling wave solutions connecting these two equilibria in one space dimension. We introduce a variational characterization of these traveling wave solutions and give a necessary and sufficient condition for linear versus nonlinear selection mechanism. We obtain sufficient conditions for the linear and nonlinear selection mechanisms that are easily verifiable. Our method also allows us to obtain efficient lower and upper bounds for the propagation speed. © 2004 Wiley Periodicals, Inc. [source]


Phase-coupled oscillator models can predict hippocampal inhibitory synaptic connections

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2001
F. K. Skinner
Abstract What factors are responsible for propagating electrical activity in the hippocampus? Using an intact, isolated hippocampus preparation, it is possible to observe spontaneous delta (, 4 Hz) waves of rhythmic field potentials. These rhythmic potentials are inhibitory in nature, mediated by GABAergic inhibitory potentials originating from a population of principal neurons. They start in the ventro-temporal region and move longitudinally towards the dorso-septal region with a phase lag of , 10% between the extracellular recordings. We use the mathematical framework of phase-coupled oscillators (PCO) to gain some insight into the underlying network system. A chain of 15 nearest-neighbour bidirectionally coupled PCOs is used where each oscillator refers to a segment of the CA1 region of the hippocampus that can generate these slow field potentials. We find that ventro-dorsal delta waves exist if there is a dominance in coupling strength in one direction. Without a one-way coupling dominance, ventro-dorsal waves can still exist, but then the coupling strengths need to be much larger. The relationship between entrained and intrinsic frequencies and the variation of propagation speeds along the longitudinal axis can be used to determine which case applies. Currently available experimental data supports one of the cases, predicting that there is a stronger ventral to dorsal inhibitory effect. [source]