Propagation Characteristics (propagation + characteristic)

Distribution by Scientific Domains
Distribution within Engineering


Selected Abstracts


Dispersion and radial depth of investigation of borehole modes

GEOPHYSICAL PROSPECTING, Issue 4 2004
Bikash K. Sinha
ABSTRACT Sonic techniques in geophysical prospecting involve elastic wave velocity measurements that are performed by placing acoustic transmitters and receivers in a fluid-filled borehole. The signals recorded at the receivers are processed to obtain compressional- and shear-wave velocities in the surrounding formation. These velocities are generally used in seismic surveys for the time-to-depth conversion and other formation parameters, such as porosity and lithology. Depending upon the type of transmitter used (e.g. monopole or dipole) and as a result of eccentering, it is possible to excite axisymmetric (n= 0), flexural (n= 1) and quadrupole (n= 2) families of modes propagating along the borehole. We present a study of various propagating and leaky modes that includes their dispersion and attenuation characteristics caused by radiation into the surrounding formation. A knowledge of propagation characteristics of borehole modes helps in a proper selection of transmitter bandwidth for suppressing unwanted modes that create problems in the inversion for the compressional- and shear-wave velocities from the dispersive arrivals. It also helps in the design of a transmitter for a preferential excitation of a given mode in order to reduce interference with drill-collar or drilling noise for sonic measurements-while-drilling. Computational results for the axisymmetric family of modes in a fast formation with a shear-wave velocity of 2032 m/s show the existence of Stoneley, pseudo-Rayleigh and anharmonic cut-off modes. In a slow formation with a shear-wave velocity of 508 m/s, we find the existence of the Stoneley mode and the first leaky compressional mode which cuts in at approximately the same normalized frequency ,a/VS= 2.5 (a is the borehole radius) as that of the fast formation. The corresponding modes among the flexural family include the lowest-order flexural and anharmonic cut-off modes. For both the fast and slow formations, the first anharmonic mode cuts in at a normalized frequency ,a/VS= 1.5 approximately. Cut-off frequencies of anharmonic modes are inversely proportional to the borehole radius in the absence of any tool. The borehole quadrupole mode can also be used for estimating formation shear slownesses. The radial depth of investigation with a quadrupole mode is marginally less than that of a flexural mode because of its higher frequency of excitation. [source]


Recent trend of the partial discharge measurement technique using the UHF electromagnetic wave detection method

IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 5 2007
Masayuki Hikita Member
Abstract The ultra high frequency (UHF) electromagnetic wave detection method has been widely studied and used in partial discharge (PD) measurement and as a diagnostic technique for insulation performance in gas-insulated switchgears (GIS) and transformers. The UHF method has advantages such as high sensitivity, wide detection range and reduced external disturbances. On the other hand, there are still some issues to be solved in the UHF methods, such as a clear understanding of the propagation characteristics of electromagnetic waves arising from the structure of the equipment, optimization of antenna design, calibration of charge, etc. This article deals with the present status and future trend of the technology of this promising UHF method of PD measurement, together with recent activities and results from our laboratory. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]


Full-wave analysis of single cylindrical striplines and microstriplines with multilayer dielectrics

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 8 2006
Farid Bouttout
Abstract In this paper, the spectral-domain method is used to calculate the propagation characteristics of cylindrical microstrip transmission lines. The problem is formulated using an electric field integral equation and the spectral-domain Green's function. The solutions of the field components are obtained in matrix forms, which facilitate the calculations of the Green's function and the power flowing over the lines. The Green's functions are obtained in terms of transition matrices over the dielectric layers. The obtained integral equation is solved by moment method using four kinds of basis functions. The convergence of the method is proven. Based on the power,current definition, a stationary expression for the characteristic impedance has been derived analytically. Numerical results of the effective dielectric constant and the characteristic impedance for various line parameters are calculated and analysed. The computed data are found to be in good agreement with results obtained using other methods. The formulation is then applied to covered microstripline, microstripline and stripline with air gaps, for which data are not found in the literature to date. The presented method is used to guide design of microstrip coil for magnetic resonance imaging. This method is also suitable for investigation of multiconductor strip lines. Copyright © 2006 John Wiley & Sons, Ltd. [source]


On optimal cell planning: Case study for a DCS 1800 system

INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 9 2001
Stavroula Bouzouki
Abstract Micro and pico cell planning strategies are adopted in personal communication systems (PCS) in order to increase their capacity. The usage of the upper UHF band in combination with greater bandwidth is already proposed by telecom engineers in order to achieve the promised service quality and data rates. These strategies are characterized by an increased number of cells in specific geographical areas with the corresponding operating base transceiving stations (BTS) located at relatively low heights above the street level. In this case, the cell planning procedure in linear streets under line-of-sight (LOS) conditions needs further study concerning the technical characteristics of the PCS. In this paper, the propagation characteristics of a DCS 1800 system are investigated on a theoretical and experimental basis in a specific geographical area (center of Patras City in Northern Pelloponesse). An improved RF propagation model is proposed in order to determine the propagation path losses occurring under certain multipath fading conditions. Hence an optimum determination of a system's cellular area can be achieved. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Modelling of photonic bandgap devices by the leaky mode propagation method

INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 3 2003
Agostino Giorgio
Abstract Main modelling approaches used for investigating the Photonic bandgap (PBG) devices are reviewed. In particular, the model based on Leaky Mode Propagation (LMP) method is described. A complete analysis of the propagation characteristics, including the determination of modal propagation constants, electromagnetic field harmonics and total field distribution, transmission and reflection coefficients, total forward and backward power flow in the structure, guided and radiated power, and total losses, can be carried out by a computer program based on the LMP approach. The numerical results have been validated by comparisons with those obtained by using other more complex and expensive models. The new model shows some significant advantages in terms of very low computational time, absence of any a priori theoretical assumptions and approximations, capability of simulating the actual physical behaviour of the device and fast determination of the bandgap position.Copyright © 2003 John Wiley & Sons, Ltd. [source]


Relationship between the propagation characteristics of via and microstrip connecting angle

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 3 2003
Wusheng Ji
Abstract The microstrip-via-microstrip is a popular interconnect structure in multilayer circuits at microwave frequency. The microstrip connecting angle is an arbitrary angle due to layout and technical error. The relationship between the propagation characteristics of via and the microstrip connecting angle was analyzed by using the Ansoft simulator. The obtained results have important application value for the design of a similar multilayer circuit. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 38: 225,228, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.11021 [source]


Directional and band-gap behavior of periodic auxetic lattices

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 3 2005
M. Ruzzene
Abstract The paper investigates the wave propagation characteristics of periodic two dimensional, auxetic lattice structures. Periodic structures in general feature unique wave propagation characteristics, whereby waves are allowed to propagate only within specific frequency bands. Two dimensional periodic structures complement this feature with a low frequency directional behavior. The combination of these unique characteristics makes two dimensional periodic structures ideal candidates for the design of pass-band directional mechanical filters. Focus is here placed on honeycomb lattice configurations. A sensitivity analysis is first presented to investigate the influence of band-gap and directional behaviors with respect to changes in the internal angle. The presented results demonstrate how re-entrant topologies feature enhanced wave attenuation capabilities with respect to hexagonal lay-outs. An optimization problem is then formulated by considering the internal angle as a design variable, and the width of the attenuation frequency ranges and angular range of propagation at low frequencies as objective functions. The identified optimal configurations feature combined properties which demonstrate the effectiveness of the analysis procedure. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


MHD waves in the solar north polar coronal hole

ASTRONOMISCHE NACHRICHTEN, Issue 7 2010
E. Devlen
Abstract The effects, hitherto not treated, of the temperature and the number density gradients, both in the parallel and the perpendicular direction to the magnetic field, of O VI ions, on the MHD wave propagation characteristics in the solar North Polar Coronal Hole are investigated. We investigate the magnetosonic wave propagation in a resistive MHD regime where only the thermal conduction is taken into account. Heat conduction across the magnetic field is treated in a non-classical approach wherein the heat is assumed to be conducted by the plasma waves emitted by ions and absorbed at a distance from the source by other ions. Anisotropic temperature and the number density distributions of O VI ions revealed the chaotic nature of MHD standing wave, especially near the plume/interplume lane borders. Attenuation length scales of the fast mode is shown not to be smoothly varying function of the radial distance from the Sun (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]