Home About us Contact | |||
Promoter Hypermethylation (promoter + hypermethylation)
Kinds of Promoter Hypermethylation Selected AbstractsAberrant promoter methylation of the TPEF gene in esophageal squamous cell carcinomaDISEASES OF THE ESOPHAGUS, Issue 7 2008B.-J. Zhao SUMMARY., Aberrant methylation of tumor suppressor genes plays an important role in the development of esophageal squamous cell carcinoma (ESCC). The purpose of the present study was to identify the epigenetic changes in ESCC. Methylation-sensitive arbitrarily primed polymerase chain reaction (MS AP-PCR) analysis was used on 22 matched ESCC tumors and adjacent normal tissues. Through this screen we identified a frequently methylated fragment that showed a high homology to the 5,-CpG island of the gene encoding a transmembrane protein containing epidermal growth factor and follistatin domains (TPEF). The methylation status of the TPEF gene was then detected by bisulfite sequencing and the levels of TPEF mRNA were detected by RT-PCR. In addition, the effects of a methylation inhibitor 5-aza-2,-deoxycytidine on TPEF mRNA expression was determined in cells of ESCC cell lines. Hypermethylation of the 5,-CpG island of TPEF was found in 12 of 22 (54.5%) primary tumors. Reverse transcription PCR analysis demonstrated that TPEF mRNA expression was significantly lower in tumors than in adjacent normal tissues, which is associated with promoter hypermethylation. In addition, treatment of ESCC cell lines with 5-aza-2,-deoxycytidine led to re-expression of the TPEF transcript. In conclusion, we observed promoter of TPEF gene is frequently hpermethylated, and is associated with the loss of TPEF mRNA expression in ESCC samples. Promoter hypermethylation of TPEF gene may play a role in the development of ESCC. [source] Significance of promoter hypermethylation of p16 gene for margin assessment in carcinoma tongueHEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 11 2009Parul Sinha MS Abstract Background Loss of p16 expression by promoter hypermethylation has been reported as an early event in the development of oral cancer. The aim of our study was to explore the prognostic implications of presence of promoter hypermethylation of p16 gene in surgical margins in carcinoma tongue. Methods A prospective analysis of 38 patients with resectable carcinoma tongue was carried out. DNA from tumor and the surgical margins was assessed by methylation-specific polymerase chain reaction. Follow-up duration was 17 to 37 months. Results About 86.8% of tumors showed promoter hypermethylation of p16 gene. Out of 30 patients with histologically free margins, 43.3% showed positivity on molecular assessment. Patients with positive molecular margins had a 6.3-fold increased risk of having local recurrence as compared to patients with negative margins. Conclusion Promoter hypermethylation of p16 gene may serve as a useful molecular marker for predicting local recurrence in carcinoma tongue. © 2009 Wiley Periodicals, Inc. Head Neck, 2009 [source] Promoter hypermethylation of CDH13 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factorsINTERNATIONAL JOURNAL OF CANCER, Issue 10 2008Zhe Jin Abstract Although the CDH13 gene has been shown to undergo epigenetic silencing by promoter methylation in many types of tumors, hypermethylation of this gene in Barrett's-associated esophageal adenocarcinogenesis has not been studied. Two hundred fifty-nine human esophageal tissues were therefore examined for CDH13 promoter hypermethylation by real-time methylation-specific PCR. CDH13 hypermethylation showed discriminative receiver-operator characteristic curve profiles, sharply demarcating esophageal adenocarcinoma (EAC) from esophageal squamous cell carcinoma (ESCC) and normal esophagus (NE) (p < 0.0001). CDH13 normalized methylation values (NMV) were significantly higher in Barrett's esophagus (BE), dysplastic BE (D) and EAC than in NE (p < 0.0000001). CDH13 hypermethylation frequency was 0% in NE but increased early during neoplastic progression, rising to 70% in BE, 77.5% in D and 76.1% in EAC. Both CDH13 hypermethylation frequency and its mean NMV were significantly higher in BE with than without accompanying EAC. In contrast, only 5 (19.2%) of 26 ESCCs exhibited CDH13 hypermethylation. Furthermore, both CDH13 hypermethylation frequency and its mean NMV were significantly higher in EAC than in ESCC, as well as in BE or D vs. ESCC. Interestingly, mean CDH13 NMV was significantly lower in short-segment than in long-segment BE, a known clinical risk factor for neoplastic progression. Similarly, BE segment length was significantly lower in specimens with unmethylated than with methylated CDH13 promoters. 5-aza-2,-deoxycytidine treatment of OE33 EAC and KYSE220 ESCC cells reduced CDH13 methylation and increased CDH13 mRNA expression. These findings suggest that hypermethylation of CDH13 is a common, tissue-specific event in human EAC, occurs early during BE-associated neoplastic progression, and correlates with known clinical neoplastic progression risk factors. © 2008 Wiley-Liss, Inc. [source] Mutations of the Wnt antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomasINTERNATIONAL JOURNAL OF CANCER, Issue 2 2007Arend Koch Abstract Medulloblastomas (MBs) represent the most common malignant brain tumors in children. Most MBs develop sporadically in the cerebellum, but their incidence is highly elevated in patients with familial adenomatous polyposis coli. These patients carry germline mutations in the APC tumor suppressor gene. APC is part of a multiprotein complex involved in the Wnt signaling pathway that controls the stability of ,-catenin, the central effector in this cascade. Previous genetic studies in MBs have identified mutations in genes coding for ,-catenin and its partners, APC and AXIN1, which cause activation of Wnt signaling. The pathway is negatively controlled by the tumor suppressor AXIN2 (Conductin), a scaffold protein of this signaling complex. To investigate whether alterations in AXIN2 may also be involved in the pathogenesis of sporadic MBs, we performed a mutational screening of the AXIN2 gene in 116 MB biopsy samples and 11 MB cell lines using single-strand conformation polymorphism and sequencing analysis. One MB displayed a somatic, tumor-specific 2 bp insertion in exon 5, leading to carboxy-terminal truncation of the AXIN2 protein. This tumor biopsy showed nuclear accumulation of ,-catenin protein, indicating an activation of Wnt signaling. In 2 further MB biopsies, mutations were identified in exon 5 (Glu408Lys) and exon 8 (Ser738Phe) of the AXIN2 gene, which are due to predicted germline mutations and rare polymorphisms. mRNA expression analysis in 22 MBs revealed reduced expression of AXIN2 mRNA compared to 8 fetal cerebellar tissues. Promoter hypermethylation could be ruled out as a major cause for transcriptional silencing by bisulfite sequencing. To study the functional role of AXIN2 in MBs, wild-type AXIN2 was overexpressed in MB cell lines in which the Wnt signaling pathway was activated by Wnt-3a. In this assay, AXIN2 inhibited Wnt signaling demonstrated in luciferase reporter assays. In contrast, overexpression of mutated AXIN2 with a deleted C-terminal DIX-domain resulted in an activation of the Wnt signaling pathway. These findings indicate that mutations of AXIN2 can lead to an oncogenic activation of the Wnt pathway in MBs. © 2007 Wiley-Liss, Inc. [source] Methylation profile in tumor and sputum samples of lung cancer patients detected by spiral computed tomography: A nested case,control studyINTERNATIONAL JOURNAL OF CANCER, Issue 5 2006Rosalia Cirincione Abstract We evaluated the aberrant promoter methylation profile of a panel of 3 genes in DNA from tumor and sputum samples, in view of a complementary approach to spiral computed tomography (CT) for early diagnosis of lung cancer. The aberrant promoter methylation of RAR,2, p16INK4A and RASSF1A genes was evaluated by methylation-specific PCR in tumor samples of 29 CT-detected lung cancer patients, of which 18 had tumor-sputum pairs available for the analysis, and in the sputum samples from 112 cancer-free heavy smokers enrolled in a spiral CT trial. In tumor samples from 29 spiral CT-detected patients, promoter hypermethylation was identified in 19/29 (65.5%) cases for RAR,2, 12/29 (41.4%) for p16INK4A and 15/29 (51.7%) for RASSF1A. Twenty-three of twenty-nine (79.3%) samples of the tumors exhibited methylation in at least 1 gene. In the sputum samples of 18 patients, methylation was detected in 8/18 (44.4%) for RAR,2 and 1/18 (5%) for both RASSF1A and p16INK4A. At least 1 gene was methylated in 9/18 (50%) sputum samples. Promoter hypermethylation in sputum from 112 cancer-free smokers was observed in 58/112 (51.7%) for RAR,2 and 20/112 (17.8%) for p16, whereas methylation of the RASSF1A gene was found in only 1/112 (0.9%) sputum sample. Our study indicates that a high frequency of hypermethylation for RAR,2, p16INK4A and RASSF1A promoters is present in spiral CT-detected tumors, whereas promoter hypermethylation of this panel of genes in uninduced sputum has a limited diagnostic value in early lung cancer detection. © 2005 Wiley-Liss, Inc. [source] Microsatellite instability of papillary subtype of human gastric adenocarcinoma and hMLH1 promoter hypermethylation in the surrounding mucosaPATHOLOGY INTERNATIONAL, Issue 4 2001Rong-Jun Guo Gastric cancer has striking heterogeneity in histological pattern, cellular phenotype, genotype, biomarkers, and biological behavior. We focused on the specific morphological papillary phenotype of gastric adenocarcinoma and attempted to identify its distinct molecular characteristics. In our comparative study, early stage papillary (papillary-dominant) gastric cancer showed a significantly higher and more widespread high-frequency microsatellite instability (MSI-H) than other morphological types. Analysis of mutations in a panel of five putative microsatellite instability (MSI)-associated genes in the MSI-H cases revealed that papillary or papillary-dominant cancer displays a unique profile of mutations compared to profiles previously reported in gastric cancer. Immunohistochemical staining and methylation analysis revealed that silencing of hMLH1 by methylation in its promoter region was responsible for the failure of mismatch repair in papillary-type gastric cancer, whereas aberrant promoter methylation of hMLH1 was not found in any cases without the unique mutator phenotype. Promoter hypermethylation of the hMLH1 genes was found to a lesser degree in the adjacent non-tumor mucosa in four of the 10 cases with tumor having the mutator phenotype. Microsatellite instability itself could not be detected in the adjacent non-tumor mucosa. Inactivation of hMLH1 expression by promoter hypermethylation may be an early event in carcinogenesis of this type of gastric cancer, preceding the development of the clear MSI phenotype of papillary carcinoma. [source] Positive Correlation of Tissue Inhibitor of Metalloproteinase-3 and Death-Associated Protein Kinase Hypermethylation in Head and Neck Squamous Cell CarcinomaTHE LARYNGOSCOPE, Issue 8 2007Chetan S. Nayak MD Abstract Objectives/Hypothesis: Promoter hypermethylation of tumor suppressor genes is common in head and neck cancer as well as other primary cancers resulting in epigenetic gene silencing. Tissue inhibitor of metalloproteinase-3 (TIMP-3) has been shown to have promoter hypermethylation in several solid tumors, but has not been identified in head and neck squamous cell carcinoma (HNSCC). Our objective was to determine if TIMP-3 promoter was hypermethylated in HNSCC, if there was any correlation with death associated protein kinase (DAPK), a tumor suppressor whose promoter has been hypermethylated at high levels in HNSCC, and if any clinical factors influence hypermethylation of either of these genes. Study Design: Prospective study. Methods: Tumor samples from 124 patients with HNSCC were evaluated for promoter hypermethylation for TIMP-3 and DAPK using quantitative methylation specific polymerase chain reaction (qMSP). We compared both TIMP-3 and DAPK hypermethylation in HNSCC with each other as well as with other clinical variables. Results: We found that TIMP-3 was hypermethylated in approximately 71.8% of the tumor samples and DAPK was hypermethylated in 74.2%. The presence of TIMP-3 and DAPK promoter hypermethylation was significantly higher than in control specimens. More importantly, TIMP-3 and DAPK hypermethylations in these samples were highly correlated with a concordance of 78% (P < .001). DAPK was also correlated with current alcohol consumption (P < .028), but neither TIMP-3 nor DAPK hypermethylation was significantly correlated with other clinical variables or with survival. Conclusion: TIMP-3 promoter hypermethylation is elevated in HNSCC and is highly correlated with DAPK hypermethylation, implying a functional relationship between these genes. [source] Methylation-Associated Silencing of Death-Associated Protein Kinase Gene in Laryngeal Squamous Cell Cancer,THE LARYNGOSCOPE, Issue 8 2005Wei-Jia Kong MD Abstract Objectives/Hypothesis: Death-associated protein kinase (DAPK) is a Ca2+/calmodulin-regulated Ser/Thr kinase that functions as a positive mediator of programmed cell death. It has been found that DAPK gene is frequently inactivated by its promoter hypermethylation in some cancers and tumor cell lines. However, it is not clear whether promoter hypermethylation of DAPK gene exists in laryngeal squamous cell cancer (LSCC). The aim of this study was to investigate the promoter methylation status of the DAPK gene in LSCC and the effect of 5-Aza-2'-deoxycytidine (5-Aza-CdR), a demethylating agent, on Hep-2 cells, a human laryngeal cancer cell line, and on xenografts of Hep-2. Methods: Methylation-specific polymerase chain reaction (PCR) and reverse-transcription PCR techniques were used to determine the promoter methylation status and mRNA expression of DAPK gene in LSCC. Furthermore, Hep-2 cells in vitro and in vivo were treated by 5-Aza-CdR to explore the effect of demethylating agents on DAPK mRNA expression and tumor growth. Results: Hypermethylation of DAPK gene promoter was found in 39 (67.2%) of 58 LSCC samples. There was no significant difference in the promoter hypermethylation rate among the samples of different histologic grades or samples from patients with different T stages. However, there was significant difference in methylation status of DAPK gene between the samples from patients in N0 stages and those from patients in N1 stages. No promoter hypermethylation of DAPK gene was found in any of the five normal laryngeal tissue samples. DAPK mRNA expression was not detected in tumor specimens with promoter hypermethylation. On the contrary, DAPK mRNA expression was observed in the unmethylated tumor specimens, specimens from tissues adjacent to the tumor, and normal laryngeal tissues samples. Promoter hypermethylation of DAPK gene was found, and no DAPK mRNA expression was detected in Hep-2 cells. DAPK mRNA expression in Hep-2 cells and xenografts could be restored by treating cells and xenografts with 5-Aza-CdR. The tumors' xenografts, induced by way of Hep-2 cell injection in nude mice treated with 5-Aza-CdR, were obviously smaller than those in nude mice treated with phosphate-buffered saline. Conclusions: Abnormal loss of DAPK expression could be associated with aberrant promoter region methylation in the LSCC. 5-Aza-CdR may slow the growth of Hep-2 cells in vitro and in vivo by reactivating tumor suppressor gene DAPK silenced by de novo methylation. [source] CDKN2A promoter methylation is related to the tumor location and histological subtype and associated with Helicobacter pylori flaA(+) strains in gastric adenocarcinomasAPMIS, Issue 4 2010MARKĘNIA KÉLIA SANTOS ALVES Alves MKS, Lima VP, Ferrasi AC, Rodrigues MA, de Moura Campos Pardini MI, Rabenhorst SHB. CDKN2A promoter methylation is related to the tumor location and histological subtype and associated with Helicobacter pylori flaA(+) strains in gastric adenocarcinomas. APMIS 2010; 118: 297,307. Promoter hypermethylation of CDKN2A (p16INK4A protein) is the main mechanism of gene inactivation. However, its association with Helicobacter pylori infection is a controversial issue. Therefore, we examined a series of gastric adenocarcinomas to assess the association between p16INK4A inactivation and H. pylori genotype (vacA, cagA, cagE, virB11 and flaA) according to the location and histological subtype of the tumors. p16INK4A expression and CDKN2A promoter methylation were found in 77 gastric adenocarcinoma samples by immunohistochemistry and methylation-specific PCR, respectively. Helicobacter pylori infection and genotype were determined by PCR. A strong negative correlation between immunostaining and CDKN2A promoter region methylation was found. In diffuse subtype tumors, the inactivation of p16INK4A by promoter methylation was unique in noncardia tumors (p = 0.022). In addition, H. pylori -bearing flaA was associated with non-methylation tumors (p = 0.008) and H. pylori strain bearing cagA or vacAs1m1 genes but without flaA was associated with methylated tumors (p = 0.022 and 0.003, respectively). Inactivation of p16INK4A in intestinal and diffuse subtypes showed distinct carcinogenic pathways, depending on the tumor location. Moreover, the process of methylation of the CDKN2A promoter seems to depend on the H. pylori genotype. The present data suggest that there is a differential influence and relevance of H. pylori genotype in gastric cancer development. [source] Hypermethylation of E-cadherin is an independent predictor of improved survival in head and neck squamous cell carcinoma,CANCER, Issue 7 2008Carmen J. Marsit PhD Abstract BACKGROUND. The loss of E-cadherin (ECAD) protein expression has been linked to aggressive head and neck squamous cell carcinoma (HNSCC). Promoter hypermethylation of the cadherin 1, type 1 (CDH1) gene (encoding ECAD) is 1 mechanism by which this protein can be inactivated, although this epigenetic alteration of the gene has not been linked conclusively to poorer patient outcome and, in fact, may be associated with better patient prognosis. METHODS. The authors investigated the prevalence of CDH1 promoter hypermethylation in a population-based case series of 340 primary HNSCC tumors using methylation-specific polymerase chain reaction. They also studied the association between CDH1 hypermethylation and patient demographic characteristics using multivariate analysis and examined the impact of CDH1 hypermethylation on patient survival using both univariate and multivariate methods. RESULTS. Hypermethylation of CDH1 was significantly more prevalent (P < .03) among individuals with a low smoking history independent of whether they were seropositive for human papillomavirus type 16 (HPV-16). Patients who had tumors with CDH1 hypermethylation had significantly better overall survival compared with patients who had tumors without hypermethylation (P < .02; log-rank test). This effect was independent of HPV-16 status and demonstrated a significant hazard ratio of 0.5 (95% confidence interval, 0.3-0.9) in a model that controlled for HPV-16 serology, age, sex, and tumor stage. CONCLUSIONS. The current results suggested that hypermethylation of CDH1 occurs more commonly in patients with HNSCC who are low smokers, suggesting that an additional factor may be driving this epigenetic alteration. Clinically, CDH1 hypermethylation may hold powerful prognostic potential in addition to that observed with HPV serology, and the authors concluded that it should be pursued in additional studies. Cancer 2008. © 2008 American Cancer Society. [source] 4368: Hypermethylation of tumour suppressor genes in ocular adnexal lymphomaACTA OPHTHALMOLOGICA, Issue 2010H MA Purpose Promoter hypermethylation occurs in various tumours, including ocular adnexal lymphomas (OAL), and is a mechanism by which tumour suppressor genes can be inactivated during tumourigenesis. This study aimed to investigate the levels of hypermethylation and specific genes that are hypermethylated in different subtypes of OAL using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and pryrosequencing. Methods DNA was extracted from formalin-fixed, paraffin-embedded tissues from 33 extra-marginal zone B-cell lymphomas (EMZL) and 37 non-EMZL. Using two MS-MLPA assays (MRC-Holland) the methylation status and copy number of 36 genes was detected. MS-MLPA results were validated using pyrosequencing. Results MLPA and pyrosequencing results were comparable with 75-100% concordancy. Ten common genes were hypermethylated in the EMZL and non-EMZL, diffuse large B-cell lymphomas (DLBCL) and mantle cell lymphomas (CDH13, DAPK1, ESR1, GATA5, IGSF4, PAX6, RAR,, THBS1, TIMP3, and WT1). In non-EMZLs, a greater number of genes showed hypermethylation when diagnosed in the orbit and patients had a poorer prognosis. Deletion of the 9p21 region was seen in 7/13 DLBCLs including the p14ARF, p15 and p16 genes. Conclusion Hypermethylation is a feature of OALs suggesting a role for epigenetic deregulation in OAL development. In non-EMZLs greater epigenetic deregulation may be indicative of poorer patient prognosis. We hypothesise that EMZL, DLBCL and mantle cell lymphomas share a similar epigenetic aetiology and that genes in the 9p21 region may be important to DLBCL development. Correlation of hypermethylation and copy number data with clinical presentation and follow-up could reveal biomarkers of diagnostic and prognostic value in OALs. [source] Aberrant promoter methylation of the TPEF gene in esophageal squamous cell carcinomaDISEASES OF THE ESOPHAGUS, Issue 7 2008B.-J. Zhao SUMMARY., Aberrant methylation of tumor suppressor genes plays an important role in the development of esophageal squamous cell carcinoma (ESCC). The purpose of the present study was to identify the epigenetic changes in ESCC. Methylation-sensitive arbitrarily primed polymerase chain reaction (MS AP-PCR) analysis was used on 22 matched ESCC tumors and adjacent normal tissues. Through this screen we identified a frequently methylated fragment that showed a high homology to the 5,-CpG island of the gene encoding a transmembrane protein containing epidermal growth factor and follistatin domains (TPEF). The methylation status of the TPEF gene was then detected by bisulfite sequencing and the levels of TPEF mRNA were detected by RT-PCR. In addition, the effects of a methylation inhibitor 5-aza-2,-deoxycytidine on TPEF mRNA expression was determined in cells of ESCC cell lines. Hypermethylation of the 5,-CpG island of TPEF was found in 12 of 22 (54.5%) primary tumors. Reverse transcription PCR analysis demonstrated that TPEF mRNA expression was significantly lower in tumors than in adjacent normal tissues, which is associated with promoter hypermethylation. In addition, treatment of ESCC cell lines with 5-aza-2,-deoxycytidine led to re-expression of the TPEF transcript. In conclusion, we observed promoter of TPEF gene is frequently hpermethylated, and is associated with the loss of TPEF mRNA expression in ESCC samples. Promoter hypermethylation of TPEF gene may play a role in the development of ESCC. [source] Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanomaGENES, CHROMOSOMES AND CANCER, Issue 1 2009Vanessa F. Bonazzi Tumor suppressor genes (TSGs) are sometimes inactivated by transcriptional silencing through promoter hypermethylation. To identify novel methylated TSGs in melanoma, we carried out global mRNA expression profiling on a panel of 12 melanoma cell lines treated with a combination of 5-Aza-2-deoxycytidine (5AzadC) and an inhibitor of histone deacetylase, Trichostatin A. Reactivation of gene expression after drug treatment was assessed using Illumina whole-genome microarrays. After qRT-PCR confirmation, we followed up 8 genes (AKAP12, ARHGEF16, ARHGAP27, ENC1, PPP1R3C, PPP1R14C, RARRES1, and TP53INP1) by quantitative DNA methylation analysis using mass spectrometry of base-specific cleaved amplification products in panels of melanoma cell lines and fresh tumors. PPP1R3C, ENC1, RARRES1, and TP53INP1, showed reduced mRNA expression in 35,59% of the melanoma cell lines compared to melanocytes and which was correlated with a high proportion of promoter methylation (>40,60%). The same genes also showed extensive promoter methylation in 6,25% of the tumor samples, thus confirming them as novel candidate TSGs in melanoma. © 2008 Wiley-Liss, Inc. [source] Inactivation of the cystatin E/M tumor suppressor gene in cervical cancerGENES, CHROMOSOMES AND CANCER, Issue 9 2008Mysore S. Veena We have previously localized a cervical cancer tumor suppressor gene to a 300 kb interval of 11q13. Analysis of candidate genes revealed loss of expression of cystatin E/M, a lysosomal cysteine protease inhibitor, in 6 cervical cancer cell lines and 9 of 11 primary cervical tumors. Examination of the three exons in four cervical cancer cell lines, 19 primary tumors, and 21 normal controls revealed homozygous deletion of exon 1 sequences in one tumor. Point mutations were observed in six other tumors. Two tumors contained mutations at the consensus binding sites for cathepsin L, a lysosomal protease overexpressed in cervical cancer. Introduction of these two point mutations using site directed mutagenesis resulted in reduced binding of mutated cystatin E/M to cathepsin L. Although mutations were not observed in any cell lines, four cell lines and 12 of 18 tumors contained promoter hypermethylation. Reexpression of cystatin E/M was observed after 5,aza 2-deoxycytidiene and/or Trichostatin A treatment of cervical cancer cell lines, HeLa and SiHa, confirming promoter hypermethylation. Ectopic expression of cystatin E/M in these two cell lines resulted in growth suppression. There was also suppression of soft agar colony formation by HeLa cells expressing the cystatin E/M gene. Reexpression of cystatin E/M resulted in decreased intracellular and extracellular expression of cathepsin L. Overexpression of cathepsin L resulted in increased cell growth which was inhibited by the reintroduction of cystatin E/M. We conclude, therefore, that cystatin E/M is a cervical cancer suppressor gene and that the gene is inactivated by somatic mutations and promoter hypermethylation. © 2008 Wiley-Liss, Inc. [source] Significance of promoter hypermethylation of p16 gene for margin assessment in carcinoma tongueHEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 11 2009Parul Sinha MS Abstract Background Loss of p16 expression by promoter hypermethylation has been reported as an early event in the development of oral cancer. The aim of our study was to explore the prognostic implications of presence of promoter hypermethylation of p16 gene in surgical margins in carcinoma tongue. Methods A prospective analysis of 38 patients with resectable carcinoma tongue was carried out. DNA from tumor and the surgical margins was assessed by methylation-specific polymerase chain reaction. Follow-up duration was 17 to 37 months. Results About 86.8% of tumors showed promoter hypermethylation of p16 gene. Out of 30 patients with histologically free margins, 43.3% showed positivity on molecular assessment. Patients with positive molecular margins had a 6.3-fold increased risk of having local recurrence as compared to patients with negative margins. Conclusion Promoter hypermethylation of p16 gene may serve as a useful molecular marker for predicting local recurrence in carcinoma tongue. © 2009 Wiley Periodicals, Inc. Head Neck, 2009 [source] Hypermethylation of gene promoters in hematological neoplasiaHEMATOLOGICAL ONCOLOGY, Issue 4 2002C. S. Chim Abstract Cancer cells are associated with global hypomethylation but with focal hypermethylation of specific gene promoters organized as CpG island. DNA methyltransferases, DNMT1 and 3 (3a and 3b), have been implicated in mediating maintenance and de novo methylation. Hypermethylation of gene promoters results in the inactivation of the corresponding genes, by preclusion of the formation of the transcription complex, due to the recruitment of MBP, MeCPs and histone deacetylase. This results in the deacetylation of histone and thus a compact chromatin complex unfavourable for the initiation of transcription. This methylation-associated gene silencing has been demonstrated in various genes including tumour suppressor genes (p15, p16, p73, VHL). Therefore, gene promoter hypermethylation collaborates with other mechanisms of gene inactivation such as deletion and intragenic mutations to fulfil Knudson's hypothesis. Hypermethylation may serve as a molecular disease marker for the detection of minimal residual disease. Emerging evidence suggests a possible prognostic value of gene promoter hypermethylation. Moreover, gene hypermethylation may also serve as a target for therapeutic invention by hypomethylating agents. Copyright © 2002 John Wiley & Sons, Ltd. [source] Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomasINTERNATIONAL JOURNAL OF CANCER, Issue 11 2010Silke Götze Abstract Aberrant activation of wingless (Wnt) signaling is involved in the pathogenesis of various cancers. Recent studies suggested a role of Wnt signaling in gliomas, the most common primary brain tumors. We investigated 70 gliomas of different malignancy grades for promoter hypermethylation in 8 genes encoding members of the secreted frizzled-related protein (SFRP1, SFRP2, SFRP4, SFRP5), dickkopf (DKK1, DKK3) and naked (NKD1, NKD2) families of Wnt pathway inhibitors. All tumors were additionally analyzed for mutations in exon 3 of the ,-catenin gene (CTNNB1). While none of the tumors carried CTNNB1 mutations, we found frequent promoter hypermethylation of Wnt pathway inhibitor genes, with at least one of these genes being hypermethylated in 6 of 16 diffuse astrocytomas (38%), 4 of 14 anaplastic astrocytomas (29%), 7 of 10 secondary glioblastomas (70%) and 23 of 30 primary glioblastomas (77%). Glioblastomas often demonstrated hypermethylation of 2 or more analyzed genes. Hypermethylation of SFRP1, SFRP2 and NKD2 each occurred in more than 40% of the primary glioblastomas, while DKK1 hypermethylation was found in 50% of secondary glioblastomas. Treatment of SFRP1-, SFRP5-, DKK1-, DKK3-, NKD1- and NKD2 -hypermethylated U87-MG glioblastoma cells with 5-aza-2,-deoxycytidine and trichostatin A resulted in increased expression of each gene. Furthermore, SFRP1 -hypermethylated gliomas showed significantly lower expression of the respective transcripts when compared with unmethylated tumors. Taken together, our results suggest an important role of epigenetic silencing of Wnt pathway inhibitor genes in astrocytic gliomas, in particular, in glioblastomas, with distinct patterns of hypermethylated genes distinguishing primary from secondary glioblastomas. [source] Promoter hypermethylation of CDH13 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factorsINTERNATIONAL JOURNAL OF CANCER, Issue 10 2008Zhe Jin Abstract Although the CDH13 gene has been shown to undergo epigenetic silencing by promoter methylation in many types of tumors, hypermethylation of this gene in Barrett's-associated esophageal adenocarcinogenesis has not been studied. Two hundred fifty-nine human esophageal tissues were therefore examined for CDH13 promoter hypermethylation by real-time methylation-specific PCR. CDH13 hypermethylation showed discriminative receiver-operator characteristic curve profiles, sharply demarcating esophageal adenocarcinoma (EAC) from esophageal squamous cell carcinoma (ESCC) and normal esophagus (NE) (p < 0.0001). CDH13 normalized methylation values (NMV) were significantly higher in Barrett's esophagus (BE), dysplastic BE (D) and EAC than in NE (p < 0.0000001). CDH13 hypermethylation frequency was 0% in NE but increased early during neoplastic progression, rising to 70% in BE, 77.5% in D and 76.1% in EAC. Both CDH13 hypermethylation frequency and its mean NMV were significantly higher in BE with than without accompanying EAC. In contrast, only 5 (19.2%) of 26 ESCCs exhibited CDH13 hypermethylation. Furthermore, both CDH13 hypermethylation frequency and its mean NMV were significantly higher in EAC than in ESCC, as well as in BE or D vs. ESCC. Interestingly, mean CDH13 NMV was significantly lower in short-segment than in long-segment BE, a known clinical risk factor for neoplastic progression. Similarly, BE segment length was significantly lower in specimens with unmethylated than with methylated CDH13 promoters. 5-aza-2,-deoxycytidine treatment of OE33 EAC and KYSE220 ESCC cells reduced CDH13 methylation and increased CDH13 mRNA expression. These findings suggest that hypermethylation of CDH13 is a common, tissue-specific event in human EAC, occurs early during BE-associated neoplastic progression, and correlates with known clinical neoplastic progression risk factors. © 2008 Wiley-Liss, Inc. [source] Presence of simian virus 40 DNA sequences in diffuse large B-cell lymphomas in Tunisia correlates with aberrant promoter hypermethylation of multiple tumor suppressor genesINTERNATIONAL JOURNAL OF CANCER, Issue 12 2007Khaled Amara Abstract The simian virus SV40 (SV40), a potent DNA oncogenic polyomavirus, has been detected in several human tumors including lymphomas, mainly in diffuse large B-cell type (DLBCL). However, a causative role for this virus has not been convincingly established. Hypermethylation in promoter regions is a frequent process of silencing tumor suppressor genes (TSGs) in cancers, which may be induced by oncogenic viruses. In this study, we investigated the relationship between the presence of SV40 DNA sequences and the methylation status of 13 TSGs in 108 DLBCLs and 60 nontumoral samples from Tunisia. SV40 DNA presence was investigated by PCR assays targeting the large T-antigen, the regulatory and the VP1 regions. Hypermethylation was carried out by methylation-specific PCR. SV40 DNA was detected in 63/108 (56%) of DLBCL and in 4/60 (6%) of nontumoral samples. Hypermethylation frequencies for the tested TSGs were 74% for DAPK, 70% for CDH1, SHP1, and GSTP1, 58% for p16, 54% for APC, 50% for p14, 39% for p15, 19% for RB1, 15% for BLU, 3% for p53, and 0% for p300 and MGMT. No hypermethylation was observed in nontumoral samples. Hypermethylation of SHP1, DAPK, CDH1, GSTP1 and p16 genes were significantly higher in SV40-positive than in SV40-negative DLBCL samples (p values ranging from 0.0006 to <0.0001). Our findings showed a high prevalence of SV40 DNA in DLBCLs in Tunisia. The significant association of promoter hypermethylation of multiple TSGs with the presence of SV40 DNA in DLBCLs supports a functional effect of the virus in those lymphomas. © 2007 Wiley-Liss, Inc. [source] Differential DNA methylation associated with hepatitis B virus infection in hepatocellular carcinomaINTERNATIONAL JOURNAL OF CANCER, Issue 6 2007Pei-Fen Su Abstract Gene inactivation through DNA hypermethylation plays a pivotal role in carcinogenesis. This study aimed to profile aberrant DNA methylation in different stages of liver disease, namely noncirrhosis, cirrhosis and hepatocellular carcinoma (HCC), and also to clarify the influence of hepatitis B virus (HBV) infection on the aberrant DNA methylation in HCCs. Promoter methylation in p14ARF, p16INK4a, O6 -methylguanine-DNA methyltransferase (MGMT), glutathione S -transferase pi (GSTP1) and E-cadherin (E-Cad) genes of 58 HCCs paired with adjacent nontumorous tissues was assayed by methylation-specific PCR. HBV infection was determined using a hepatitis B virus surface antigen (HBsAg) serological assay. The frequency of p16INK4a promoter methylation increased from noncirrhotic, cirrhotic, to HCC tissues (noncirrhotic vs. HCC, p < 0.001), while that of GSTP1 promoter methylation increased in cirrhotic tissues compared to noncirrhotic ones (p = 0.029). The frequency of GSTP1 promoter hypermethylation is significantly higher in HCC than in nontumorous tissues (p = 0.022) from HBsAg-positive patients, but not the HBsAg-negative controls (p = 0.289). While the frequency of E-Cad promoter hypermethylation remained high in both nontumorous tissues and HCCs from HBsAg-positive patients (p = 0.438), it was lower in HCCs than in nontumorous tissues from HBsAg-negative patients (p = 0.002). In contrast, the frequency of p16INK4a, MGMT and p14ARF promoter hypermethylation in HCCs was unrelated to HBsAg status. In conclusion, aberrant DNA methylation may begin at different stages of liver disease in a gene-dependent manner. Moreover, HBV infection may enhance or maintain GSTP1 and E-Cad promoter methylation and thereby affect hepatocarcinogenesis. © 2007 Wiley-Liss, Inc. [source] Frequent inactivation of SPARC by promoter hypermethylation in colon cancersINTERNATIONAL JOURNAL OF CANCER, Issue 3 2007Eungi Yang Abstract Epigenetic modification of gene expression plays an important role in the development of human cancers. The inactivation of SPARC through CpG island methylation was studied in colon cancers using oligonucleotide microarray analysis and methylation specific PCR (MSP). Gene expression of 7 colon cancer cell lines was evaluated before and after treatment with the demethylating agent 5-aza-2,-deoxycytidine (5Aza-dC) by oligonucleotide microarray analysis. Expression of SPARC was further examined in colon cancer cell lines and primary colorectal cancers, and the methylation status of the SPARC promoter was determined by MSP. SPARC expression was undetectable in 5 of 7 (71%) colorectal cancer cell lines. Induction of SPARC was demonstrated after treatment with the demethylating agent 5Aza-dC in 5 of the 7 cell lines. We examined the methylation status of the CpG island of SPARC in 7 colon cancer cell lines and in 20 test set of colon cancer tissues. MSP demonstrated hypermethylation of the CpG island of SPARC in 6 of 7 cell lines and in all 20 primary colon cancers, when compared with only 3 of 20 normal colon mucosa. Immunohistochemical analysis showed that SPARC expression was downregulated or absent in 17 of 20 colon cancers. A survival analysis of 292 validation set of colorectal carcinoma patients revealed a poorer prognosis for patients lacking SPARC expression than for patients with normal SPARC expression (56.79% vs. 75.83% 5-year survival rate, p = 0.0014). The results indicate that epigenetic gene silencing of SPARC is frequent in colon cancers, and that inactivation of SPARC is related to rapid progression of colon cancers. © 2007 Wiley-Liss, Inc. [source] Methylation profile in tumor and sputum samples of lung cancer patients detected by spiral computed tomography: A nested case,control studyINTERNATIONAL JOURNAL OF CANCER, Issue 5 2006Rosalia Cirincione Abstract We evaluated the aberrant promoter methylation profile of a panel of 3 genes in DNA from tumor and sputum samples, in view of a complementary approach to spiral computed tomography (CT) for early diagnosis of lung cancer. The aberrant promoter methylation of RAR,2, p16INK4A and RASSF1A genes was evaluated by methylation-specific PCR in tumor samples of 29 CT-detected lung cancer patients, of which 18 had tumor-sputum pairs available for the analysis, and in the sputum samples from 112 cancer-free heavy smokers enrolled in a spiral CT trial. In tumor samples from 29 spiral CT-detected patients, promoter hypermethylation was identified in 19/29 (65.5%) cases for RAR,2, 12/29 (41.4%) for p16INK4A and 15/29 (51.7%) for RASSF1A. Twenty-three of twenty-nine (79.3%) samples of the tumors exhibited methylation in at least 1 gene. In the sputum samples of 18 patients, methylation was detected in 8/18 (44.4%) for RAR,2 and 1/18 (5%) for both RASSF1A and p16INK4A. At least 1 gene was methylated in 9/18 (50%) sputum samples. Promoter hypermethylation in sputum from 112 cancer-free smokers was observed in 58/112 (51.7%) for RAR,2 and 20/112 (17.8%) for p16, whereas methylation of the RASSF1A gene was found in only 1/112 (0.9%) sputum sample. Our study indicates that a high frequency of hypermethylation for RAR,2, p16INK4A and RASSF1A promoters is present in spiral CT-detected tumors, whereas promoter hypermethylation of this panel of genes in uninduced sputum has a limited diagnostic value in early lung cancer detection. © 2005 Wiley-Liss, Inc. [source] Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumorsINTERNATIONAL JOURNAL OF CANCER, Issue 3 2005Maria Möllemann Abstract Allelic losses on the chromosome arms 1p and 19q have been associated with favorable response to chemotherapy and good prognosis in anaplastic oligodendroglioma patients, but the molecular mechanisms responsible for this relationship are as yet unknown. The DNA repair enzyme O6 -methylguanine DNA methyltransferase (MGMT) may cause resistance to DNA-alkylating drugs commonly used in the treatment of anaplastic oligodendrogliomas and other malignant gliomas. We report on the analysis of 52 oligodendroglial tumors for MGMT promoter methylation, as well as mRNA and protein expression. Using sequencing of sodium bisulfite-modified DNA, we determined the methylation status of 25 CpG sites within the MGMT promoter. In 46 of 52 tumors (88%), we detected MGMT promoter hypermethylation as defined by methylation of more than 50% of the sequenced CpG sites. Real-time reverse transcription-PCR showed reduced MGMT mRNA levels relative to non-neoplastic brain tissue in the majority of tumors with hypermethylation. Similarly, immunohistochemical analysis showed either no or only small fractions of MGMT positive tumor cells. MGMT promoter hypermethylation was significantly more frequent and the percentage of methylated CpG sites in the investigated MGMT promoter fragment was significantly higher in tumors with loss of heterozygosity on chromosome arms 1p and 19q as compared to tumors without allelic losses on these chromosomes arms. Taken together, our data suggest that MGMT hypermethylation and low or absent expression are frequent in oligodendroglial tumors and likely contribute to the chemosensitivity of these tumors. [source] Silencing of the retinoid response gene TIG1 by promoter hypermethylation in nasopharyngeal carcinoma,INTERNATIONAL JOURNAL OF CANCER, Issue 3 2005Joseph Kwong Abstract Tazarotene-induced gene 1 (TIG1) and Tazarotene-induced gene 3 (TIG3) are retinoid acid (RA) target genes as well as candidate tumor suppressor genes in human cancers. In our study, we have investigated the expression of TIG1 and TIG3 in nasopharyngeal carcinoma (NPC). Loss of TIG1 expression was found in 80% of NPC cell lines and 33% of xenografts, whereas TIG3 was expressed in all NPC samples and immortalized nasopharyngeal epithelial cells. In order to elucidate the epigenetic silencing of TIG1 in NPC, the methylation status of TIG1 promoter was examined by genomic bisulfite sequencing and methylation-specific PCR (MSP). We have detected dense methylation of TIG1 5,CpG island in the 5 TIG1 -negative NPC cell lines and xenograft (C666-1, CNE1, CNE2, HONE1 and X666). Partial methylation was observed in 1 NPC cell line HK1 showing dramatic decreased in TIG1 expression. Promoter methylation was absent in 2 TIG1 -expressed NPC xenografts and the normal epithelial cells. Restoration of TIG1 expression and unmethylated alleles were observed in NPC cell lines after 5-aza-2,-deoxycytidine treatment. Moreover, the methylated TIG1 sequence was detected in 39 of 43 (90.7%) primary NPC tumors by MSP. In conclusion, our results showed that TIG1 expression is lost in the majority of NPC cell lines and xenografts, while promoter hypermethylation is the major mechanism for TIG1 silencing. Furthermore, the frequent epigenetic inactivation of TIG1 in primary NPC tumors implied that it may play an important role in NPC tumorigenesis. [source] Detecting methylation patterns of p16, MGMT, DAPK and E-cadherin genes in multiple myeloma patientsINTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 2 2010O. OZALP YUREGIR Summary Multiple myeloma (MM) is a B-cell neoplasia characterized by the clonal proliferation of plasma cells. Besides known genetic abnormalities, epigenetic changes are also known to effect MM pathogenesis. DNA methylation is an epigenetic mechanism that silences genes by adding methyl groups to cytosine-guanine dinucleotides at the promoter regions. In this study, the methylation status of four genes; p16, O6-methyl guanine DNA methyl transferase (MGMT), death-associated protein kinase (DAPK) and E-cadherin (ECAD); at the time of diagnosis was investigated using methylation-specific polymerase chain reaction (MS-PCR). In the 20 cases studied; methylation of the promoter regions of p16, MGMT, DAPK and ECAD genes was detected in 10%, 40%, 10% and 45% of the cases, respectively. In 65% (13/20) of cases, at least one of the genes studied had promoter methylation; while 35% of cases (7/20) had methylated promoters of more than one gene. There was a significant correlation between promoter hypermethylation of MGMT and the presence of extramedullary involvement; but for the other genes no correlation was found regarding disease properties like age, disease stage, clinical course and the presence of lytic bone lesions. Determining the methylation profiles of genes in MM, could lead to a new understanding of the disease pathogenesis and guide the assessment of treatment options. [source] In Vitro Cyclooxygenase-2 Protein Expression and Enzymatic Activity in Neoplastic CellsJOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 5 2007David A. Heller Background: Cyclooxygenase-2 (COX-2) and its principle enzymatic metabolite, prostaglandin E2 (PGE2), are implicated in cancer progression. Based upon immunohistochemical (IHC) evidence that several tumor types in animals overexpress COX-2 protein, COX-2 inhibitors are used as anticancer agents in dogs and cats. Hypothesis: IHC is inaccurate for assessing tumor-associated COX-2 protein and enzymatic activity. Methods: Five mammalian cell lines were assessed for COX-2 protein expression by IHC and Western blot analysis (WB), and functional COX-2 activity was based upon PGE2 production. Results: Detection of COX-2 protein by IHC and WB were in agreement in 4 of 5 cell lines. In 1 cell line that lacked COX-2 gene transcription because of promoter hypermethylation (HCT-116), IHC produced false-positive staining for COX-2 protein expression. Functional COX-2 enzymatic activity was dissociated from relative IHC-based COX-2 protein expression in 2 cell lines (RPMI 2650 and SCCF1). The RPMI 2650 cell line demonstrated strong COX-2 protein expression but minimal PGE2 production. Conclusions and Clinical Importance: Western blot is more accurate than IHC for the detection of COX-2 protein in the cell lines studied. Furthermore, the semiquantitative identification of COX-2 protein by IHC or WB does not necessarily correlate with enzymatic activity. Based upon the potential inaccuracy of IHC and dissociation of COX-2 protein expression from enzymatic activity, the practice of instituting treatment of tumors with COX-2 inhibitors based solely on IHC results should be reconsidered. [source] Chromatin changes on the GSTP1 promoter associated with its inactivation in prostate cancerMOLECULAR CARCINOGENESIS, Issue 10 2007Steven T. Okino Abstract Glutathione- S -transferases (GSTs) are metabolic enzymes that help detoxify and eliminate harmful chemicals. In prostate tumors, expression of GST , (encoded by GSTP1) is frequently lost because of promoter hypermethylation. Here we analyze the native GSTP1 promoter in cancerous and noncancerous human prostate cells to identify structural features associated with its cancer-related transcriptional silencing. We find that in noncancerous prostate cells (RWPE-1 and PWR-1E) GSTP1 is constitutively expressed, not methylated, highly accessible, bound by transcription factors and associated with histones with activating modifications (histone H3 methylated at lysine 4 and acetylated histones H3 and H4). In contrast, in cancerous prostate cells (LNCaP) GSTP1 is not expressed, extensively methylated, inaccessible, lacks bound transcription factors and is not associated with histones with activating modifications. We do not detect significant levels of histones with repressive modifications (histone H3 methylated at lysine 9 or 27) on GSTP1 in any cell line indicating that they are not associated with cancer-related GSTP1 silencing. Treatment of LNCaP cells with 5-azacytidine restores activating histone modifications on GSTP1 and reactivates transcription. We conclude that, in the process of prostate carcinogenesis, activating histone modifications on GSTP1 are lost and the DNA becomes methylated and inaccessible resulting in transcriptional silencing. © 2007 Wiley-Liss, Inc. [source] Inactivation of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene in squamous cell carcinoma of the larynxMOLECULAR CARCINOGENESIS, Issue 3 2004Robert Smigiel Abstract Defects in the system controlling the cell cycle can lead an increased proliferation of cancer cells. The aim of our study was to analyze the relationship between genetic changes leading to inactivation of the CDKN2A gene and subsequent alteration of protein expression in squamous cell cancer of the larynx (SCCL) in connection with the clinical and histopathological course of the disease. Analysis was carried out on DNA isolated from the blood and primary larynx cancer cells of 62 patients. To investigate loss of heterozygosity (LOH), PCR fragment analysis was applied. The size and quantity of fluorescent PCR products were evaluated in an automated sequencer. Specific chemical methylation with sodium bisulfite in a sequential PCR reaction (MSP) was applied to analyze promoter methylation. Cancer tissue sections served to determine the level of protein expression with immunohistochemical (IHC) staining and commercial antibodies. LOH at the CDKN2A locus was observed in 55.35% of the informative cases. Aberrant methylation was found in 37.5% and a decreased level of protein expression observed in 45% of all informative cases. Whenever P16 expression was decreased, LOH and promoter hypermethylation at CDKN2A were observed with a frequency of 73.33% and 80.95%, respectively (Fisher's test, P,<,0.005). Sixty-nine percent of G3 tumors had at least one genetic alteration at CDKN2A, compared with 40.9% of G1 cancers. The results indicate that CDKN2A inactivation played a significant role in the development of squamous cell carcinoma of the larynx. © 2004 Wiley-Liss, Inc. [source] C/EBPA gene mutation and C/EBPA promoter hypermethylation in acute myeloid leukemia with normal cytogenetics,,AMERICAN JOURNAL OF HEMATOLOGY, Issue 6 2010Ying Lu In the current study, we investigated C/EBPA gene mutations and promoter hypermethylation in a series of 53 patients with CN-AML. In addition, we also analyzed two other frequent mutations (FLT3/ITD and NPM1) in these patients and correlated them with C/EBPA gene alterations. 13/53 patients were FLT3/ITD+/NPM1- , 11/53 patients were FLT3/ITD+/NPM1+, 9/53 patients were FLT3/ITD-/NPM1+, and 20/53 patients were FLT3/ITD-/NPM1- . Four of 53 cases displayed C/EBPA mutations, whereas 49 cases had only C/EBPA wild-type alleles. Of the four positive cases, three patients had N-terminal mutations only, whereas one patient had mutations in both the N- and C-terminal region. Two of the four positive cases also harbored both FLT3/ITD and NPM1 mutation simultaneously, whereas the other two patients had neither FLT3/ITD nor NPM1 mutations. Furthermore, 7/53 cases displayed C/EBPA promoter hypermethylation. Interestingly, they were all in CN-AML cases without FLT3/ITD or NPM1 mutations. None of the seven patients with C/EBPA promoter hypermethylation showed C/EBPA mutation. In conclusion, C/EBPA mutation and promoter hypermethylation can be detected at a relatively low frequency in de novo CN-AML patients, suggesting they may contribute to leukemogenesis. C/EBPA mutation appears to be seen in "high-risk" AML (FLT3/ITD+/NPM1+; FLT3/ITD+/NPM1- or FLT3/ITD-/NPM1- ), while C/EBPA hypermethylation appears to be more common in AML with FLT3/ITD - /NPM1 - and is not associated with C/EBPA mutation. Am. J. Hematol. 2010. © 2010 Wiley-Liss, Inc. [source] Microsatellite instability in esophageal squamous cell carcinoma is not associated with hMLH1 promoter hypermethylationPATHOLOGY INTERNATIONAL, Issue 5 2003Masahiro Hayashi To test whether a subset of esophageal squamous cell carcinomas (SCC) develop through a deficiency in DNA mismatch repair, we examined microsatellite instability (MSI) using 11 microsatellite markers including BAT-26, hMLH1 protein expression by immunohistochemistry, and methylation status of the hMLH1 promoter by methylation-specific polymerase chain reaction (MSP). p53 mutations were also investigated. Microsatellite instability at one or more loci was observed in 40% (12/30) of esophageal SCC tumor samples, although only one of these tumors was categorized as high-frequency MSI (MSI-H) and none showed BAT-26 instability. While immunohistochemistry revealed decreased hMLH1 protein expression in 27% (8/30) of the tumors, hMLH1 promoter hypermethylation was not observed. Absence of hMLH1 protein expression was relatively common in well-differentiated (keratinizing-type) esophageal SCC, but was not associated with hMLH1 promoter hypermethylation. p53 mutation was detected in 37% (11/30) and loss of heterozygosity (LOH) in 90% (27/30) of esophageal SCC samples. Our results suggested that most esophageal SCC develop through defects in tumor suppressor genes (i.e. the suppressor pathway), and that MSI in esophageal SCC probably represent random replication errors rather than being associated with DNA mismatch repair deficiency. [source] |