Home About us Contact | |||
Prominent Expression (prominent + expression)
Selected AbstractsExpression pattern of Popdc2 during mouse embryogenesis and in the adultDEVELOPMENTAL DYNAMICS, Issue 3 2008Alexander Froese Abstract The Popdc2 gene is a member of the Popeye domain containing gene family encoding membrane proteins with prominent expression in striated and smooth muscle tissue. After introducing a LacZ reporter gene into the Popdc2 locus, expression was studied during embryonic development and postnatal life. At embryonic day (E) 7.5, expression was present in cardiac and extraembryonic mesoderm. At E10.5, expression was found in heart, somites, and mesothelial cells lining the coelom. At E12.5, expression was present in the coelomic mesothelium, pericardial and myocardial layer of the heart, skeletal muscle, bladder, gut, and umbilical vessels. Postnatal expression was found in cardiac and skeletal muscle and in the smooth muscle layer of colon, rectum, and bladder. In the stomach, Popdc2 was exclusively present in the pyloric epithelium. In conclusion, Popdc2 is expressed in various muscle and nonmuscle cell types during embryonic development and in postnatal life. Developmental Dynamics 237:780,787, 2008. © 2008 Wiley-Liss, Inc. [source] Cloning and functional characterization of a novel connexin expressed in somites of Xenopus laevisDEVELOPMENTAL DYNAMICS, Issue 3 2005Teun P. De Boer Abstract Connexin-containing gap junctions play an essential role in vertebrate development. More than 20 connexin isoforms have been identified in mammals. However, the number identified in Xenopus trails with only six isoforms described. Here, identification of a new connexin isoform from Xenopus laevis is described. Connexin40.4 was found by screening expressed sequence tag databases and carrying out polymerase chain reaction on genomic DNA. This new connexin has limited amino acid identity with mammalian (<50%) connexins, but conservation is higher (,62%) with fish. During Xenopus laevis development, connexin40.4 was first expressed after the mid-blastula transition. There was prominent expression in the presomitic paraxial mesoderm and later in the developing somites. In adult frogs, expression was detected in kidney and stomach as well as in brain, heart, and skeletal muscle. Ectopic expression of connexin40.4 in HEK293 cells, resulted in formation of gap junction like structures at the cell interfaces. Similar ectopic expression in neural N2A cells resulted in functional electrical coupling, displaying mild, asymmetric voltage dependence. We thus cloned a novel connexin from Xenopus laevis, strongly expressed in developing somites, with no apparent orthologue in mammals. Developmental Dynamics 233:864,871, 2005. © 2005 Wiley-Liss, Inc. [source] Wnt11 and Wnt7a are up-regulated in association with differentiation of cardiac conduction cells in vitro and in vivoDEVELOPMENTAL DYNAMICS, Issue 4 2003Jacqueline Bond Abstract The heart beat is coordinated by a precisely timed sequence of action potentials propagated through cells of the conduction system. Previously, we have shown that conduction cells in the chick embryo are derived from multipotent, cardiomyogenic progenitors present in the looped, tubular heart. Moreover, analyses of heterogeneity within myocyte clones and cell birth dating have indicated that elaboration of the conduction system occurs by ongoing, localized recruitment from within this multipotent pool. In this study, we have focused on a potential role for Wnt signaling in development of the cardiac conduction system. Treatment of embryonic myocytes from chick with endothelin-1 (ET-1) has been shown to promote expression of markers of Purkinje fiber cells. By using this in vitro model, we find that Wnt11 are Wnt7a are up-regulated in association with ET-1 treatment. Moreover, in situ hybridization reveals expression, although not temporal coincidence of, Wnt11 and Wnt7a in specialized tissues in the developing heart in vivo. Specifically, whereas Wnt11 shows transient and prominent expression in central elements of the developing conduction system (e.g., the His bundle), relative increases in Wnt7a expression emerge at sites consistent with the location of peripheral conduction cells (e.g., subendocardial Purkinje fibers). The patterns of Wnt11 and Wnt7a expression observed in vitro and in the embryonic chick heart appear to be consistent with roles for these two Wnts in differentiation of cardiac conduction tissues. Development Dynamics 227:536,543, 2003. © 2003 Wiley-Liss, Inc. [source] Apoptosis in oral lichen planusEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 5 2001Evelyn Neppelberg Apoptotic cell death may be a contributory cause of basal cell destruction in oral lichen planus (OLP). Therefore, the purpose of this study was to investigate the rate of apoptosis in OLP and the expression of two proteins (FasR and FasL) regulating this process. Biopsies from 18 patients with histologically diagnosed OLP were investigated, with comparison to normal oral mucosa of healthy persons. For visualisation of DNA fragmentation, the TUNEL method was used. In order to characterise the infiltrating cell population (CD3, CD4, CD8) and expression of FasR and FasL, we used an immunohistochemical technique. The results showed that T cells dominated in the subepithelial cell infiltrate. Within the epithelium the apoptotic cells were confined to the basal cell layer, and more apoptotic cells were seen in areas with basal cell degeneration and atrophic epithelium. There was a prominent expression of FasR/FasL in OLP, with a rather uniform distribution throughout the inflammatory cell infiltrate. In the epithelium, the FasR/FasL expression was more abundant in the basal cell area compared to the suprabasal cell layer. In conclusion, apoptosis within the epithelium is significantly increased in situ in OLP compared to normal oral mucosa, and seems to be related to the epithelial thickness. [source] Association among Fas expression in leucocytes, serum Fas and Fas-ligand concentrations and hepatic inflammation and fibrosis in chronic hepatitis CLIVER INTERNATIONAL, Issue 3 2010Anatol Panasiuk Abstract Background: Replication of the hepatitis C virus (HCV) in peripheral blood mononuclear cells (PBMC) may impair immune functions and establish persistent infection. The aim of this study was to assess the influence of HCV on PBMC and their susceptibility to apoptosis in relation to liver inflammation and fibrosis. Methods: Eighty-one patients with chronic hepatitis C (CHC) were enrolled in this study. Flow cytometry was used to determine the amount of T cells (CD4+, CD8+), B cells (CD19+), monocytes (CD14+) and natural killer cells (CD16+) in the peripheral blood and the expression of CD95+ (CD95/APO-1) in each subset. Serum concentrations of sFas and sFasL were assessed by the enzyme-linked immunosorbent assay method. Results: An increased expression of Fas was observed in CD4+ and CD8+ cells in CHC. There was a more prominent expression of Fas on CD4+ cells in HCV genotype 1b in contrast to 3a. Increased Fas expression on CD4+ cells was seen in advanced stages of liver disease. Fas expression on monocytes was lower in advanced stages of liver inflammation and fibrosis. Serum sFas concentration was higher in CHC compared with the control group. There was an association between sFasL concentration and inflammatory activity in the liver. Serum sFasL concentration correlated positively with the mean intensity of fluorescence of the Fas receptor in CD4+ and CD8+ cells, granulocytes and monocytes. Conclusion: These findings indicate that there is an increased susceptibility of PBMC to apoptosis, which can be attributed to the constant contact of leucocytes with the inflamed liver tissue, or from direct HCV influence. [source] |