Home About us Contact | |||
Production Patterns (production + pattern)
Selected AbstractsCall for Papers for a Special Series on Sustainable Consumption and Production Patterns, Transport, Chemicals, Waste Management and MiningNATURAL RESOURCES FORUM, Issue 4 2008Article first published online: 12 NOV 200 No abstract is available for this article. [source] The exopolysaccharide of Rhizobium sp.ENVIRONMENTAL MICROBIOLOGY, Issue 8 2008Brassica napus roots but contributes to root colonization, YAS34 is not necessary for biofilm formation on Arabidopsis thaliana Summary Microbial exopolysaccharides (EPSs) play key roles in plant,microbe interactions, such as biofilm formation on plant roots and legume nodulation by rhizobia. Here, we focused on the function of an EPS produced by Rhizobium sp. YAS34 in the colonization and biofilm formation on non-legume plant roots (Arabidopsis thaliana and Brassica napus). Using random transposon mutagenesis, we isolated an EPS-deficient mutant of strain YAS34 impaired in a glycosyltransferase gene (gta). Wild type and mutant strains were tagged with a plasmid-born GFP and, for the first time, the EPS produced by the wild-type strain was seen in the rhizosphere using selective carbohydrate probing with a fluorescent lectin and confocal laser-scanning microscopy. We show for the fist time that Rhizobium forms biofilms on roots of non-legumes, independently of the EPS synthesis. When produced by strain YAS34 wild type, EPS is targeted at specific parts of the plant root system. Nutrient fluctuations, root exudates and bacterial growth phase can account for such a production pattern. The EPS synthesis in Rhizobium sp. YAS34 is not essential for biofilm formation on roots, but is critical to colonization of the basal part of the root system and increasing the stability of root-adhering soil. Thus, in Rhizobium sp. YAS34 and non-legume interactions, microbial EPS is implicated in root,soil interface, root colonization, but not in biofilm formation. [source] Cyclobilirubin formation by in vitro photoirradiation with neonatal phototherapy lightPEDIATRICS INTERNATIONAL, Issue 3 2001Saneyuki Yasuda Abstract Background: The main mechanism of phototherapy for neonatal hyperbilirubinemia is the production and excretion of (EZ)- and (EE)-cyclobilirubin (4E,15Z- and 4E,15E-cyclobilirubin). Thus, the clinical efficacy of the light source for phototherapy must be evaluated by cyclobilirubin formation from (ZZ)-bilirubin in in vitro photoirradiation. Methods: In the present study, we investigated the in vitro production pattern of bilirubin photoisomers by phototherapy light from the bilirubin,human serum albumin complex. Results: No clear difference was found in the curves relative to (ZZ)-bilirubin and its photoisomers under aerobic and anaerobic conditions. The ratio of (EZ)-cyclobilirubin to (ZZ)-bilirubin increased proportionately to the dose of irradiating light and no photoequilibrium state was observed analogous to that found in configurational photoisomerization. The concentration of (EZ)- and (EE)-cyclobilirubin increased proportionately with the grade of the percentage decrease in A460 nm from 0 to 23%. With a percentage decrease in A460 nm of 23% or more, the cyclobilirubin concentrations reached a steady state. The reason for this appears to be that the concentration of (ZZ)-bilirubin, a substrate for photoisomers, dropped below 1 mg/100 mL. Biliverdin was produced only in trace amounts. However, the absorption at 520,700 nm increased after a percentage decrease in A460 nm of more than 23%. Conclusions: The results of the present study show that little bilirubin photooxidation occurred with in vitro aerobic photoirradiation. Before the concentration of cyclobilirubin reaches a steady state, it is theoretically valid to use the percentage decrease in A460 nm for the evaluation of the clinical efficacy of the light source. [source] Organic-walled dinoflagellate cyst production in relation to upwelling intensity and lithogenic influx in the Cape Blanc region (off north-west Africa)PHYCOLOGICAL RESEARCH, Issue 2 2005Ewa Susek SUMMARY Fossil dinoflagellate cyst assemblages are increasingly used in paleoclimatic research to establish paleoenvi-ronmental reconstructions. To obtain reliable reconstructions, it is essential to know which physical factors influence the cyst production. Most information about the relationship between variations in physical parameters and cyst production is known from middle and higher latitudes. Information from the (sub)tropics is rare. To increase this information, the temporal variation in cyst assemblages from the upwelling area off north-west Africa (off Mauritania) has been compared to environmental conditions of the upper water column. Samples were collected by the sediment trap CB9, off north-west Africa (Cape Blanc, 21°15,2,N, 20°42,2,W) between 11 June 1998 and 7 November 1999 at 27.5-day intervals. Off Cape Blanc, upwelling occurs throughout the year with variable intensity. This region is also characterized by frequently occurring Saharan dust storms. Seasonal variations in dust input, upwelling intensity and sea surface temperature are reflected by the production of organic-walled dinoflagellate cyst assemblages. Several cyst taxa are produced throughout the sampling interval, with the highest fluxes at times of strongest upwelling relaxation and/or dust input (Echinidinium aculeatum Zonneveld, Echini-din ium delicatum Zonneveld, Echinidinium granulaturn Zonneveld, Echinidinium spp., Impagidinium aculeatum (Wall) Lentin et Williams, Impagidinium sphaeri-cum (Wall) Lentin et Williams, Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium stellatum (Wall in Wall et Dale) Rochon etal., Protoperidinium spp., Selenopemphix nephroides (Benedek) Benedek et Sarjeant and Selenopemphix quanta (Bradford) Matsuoka). Species such as, for example, Bitectatodinium spongium (Zonneveld) Zonneveld et Jurkschat and Impagidinium patulum (Wall) Stover et Evitt do not show any production pattern related to a particular season of the year or to specific environmental conditions in the upper water column. The production of cysts of Protoperidinium monospinum (Paulsen) Zonneveld et Dale is restricted to intervals with increased nutrient concentrations in upper waters when sea surface temperatures at the sampling site is below approximately 24°C. [source] Inflammatory cytokines modulate chemokine production patterns of HepG2 cells toward initially inclined directionHEPATOLOGY RESEARCH, Issue 5 2009Tomohiko Ohashi Aim:, Human hepatocytes are known to express an array of inflammatory cytokines and chemokines. In this study, we examined the potential roles of hepatocytes in regulating immune responses in the liver, by assessing the induction of Th1- or Th2-specific chemokines in HepG2 cells after various inflammatory stimulations. Methods:, HepG2 cells were stimulated with IL-1,, IFN-,, IL-4, IL-10, and/or CCL2, harvested at several time points, and served for the analyses of cytokine/chemokine mRNA expressions by semi-quantitative RT-PCR. Results:, (i) IL-1, up-regulated mRNA levels of CXCL8, CXCL10, and CCL2. IFN-, increased those of CXCL9, CXCL10, and CCL5, while IL-4 or IL-10 had no effect. (ii) Addition of IL-4 to the culture of IFN-,-stimulated cells, down-regulated CXCL9 and CXCL10 mRNA levels. (iii) Addition of IFN-, to the culture of IL-1,-stimulated cells, further up-regulated CXCL9 and CXCL10 mRNA levels. Addition of IL-4 decreased CXCL8 and CXCL10 levels, and increased CCL2 level in IL-1,-stimulated cells. (iv) CCL2 induced IL-4 mRNA expression. Conclusions:, IFN-, augmented mRNA expression of Th1-specific chemokines (CXCL9 and CXCL10) in HepG2 cells. IL-4 had no effect on those of Th2-spesific chemokines (CCL17 and CCL22); however, it was supposed to augment Th2 response indirectly through the induction of CCL2 under the inflammatory condition. The findings suggest that hepatocytes have ability to promote immune responses in the liver toward the direction, initially determined by the cytokine balances in the local inflammatory region. [source] Local-scale synchrony and variability in mast seed production patterns of Picea glaucaJOURNAL OF ECOLOGY, Issue 5 2007JALENE M. LAMONTAGNE Summary 1Mast seeding is the synchronous and highly variable production of seed by a population of plants. Mast seeding results from the behaviour of individuals; however, little is known about the synchrony of individuals at local scales. 2We address two primary questions at a within-population (17,36 ha study plots) and individual level: (i) How variable is seed production between and within years? (ii) How synchronized is seed production between individuals? 3We monitored annual cone production of 356 Picea glauca (white spruce) from 1990 to 2005 within four plots spanning a total distance of 5.3 km in the Yukon Territory, Canada. 4Spearman correlations (rs) were conducted to test for synchrony. Overall, the trees were moderately synchronous (mean rs (± SE) of 0.52 ± 0.14), and synchrony was statistically detectable (rs > 0) over all distances. Individuals < 75 m apart were highly synchronous (0.64 ± 0.18), and correlations dropped to 0.33 ± 0.07 for trees > 3 km apart. There was considerable variation in cone production patterns among pairs of individuals. 5The number of mast years per plot varied from one to three. During a mast year, many individuals within plots produced large cone crops, with more variability between individuals in low mean cone years. Individual trees had dominant endogenous cycles varying from none to 1,5 years. Forty-four per cent of trees had no significant lag, 23% a negative 1-year lag, and 20% a positive 3-year lag. Basal area did not influence lags, but trees with higher mean cone production throughout the study were more likely to have a 3-year lag compared with no lag. 6The scale of highest synchrony coincided with the scale at which the dominant seed predator in the area, the territorial red squirrel (Tamiasciurus hudsonicus), operates. This may be the scale at which selection for synchrony occurs. 7Based on high synchrony locally, high synchrony within a mast year, and multiple lags in cone production by individuals, both available resources and strong weather cues appear to play roles in the observed patterns. [source] Recognition of anaerobic bacterial isolates in vitro using electronic nose technologyLETTERS IN APPLIED MICROBIOLOGY, Issue 5 2002A. Pavlou Aims: Use of an electronic nose (e.nose) system to differentiation between anaerobic bacteria grown in vitro on agar media. Methods and Results: Cultures of Clostridium spp. (14 strains) and Bacteroides fragilis (12 strains) were grown on blood agar plates and incubated in sampling bags for 30 min before head space analysis of the volatiles. Qualitative analyses of the volatile production patterns was carried out using an e.nose system with 14 conducting polymer sensors. Using data analysis techniques such as principal components analysis (PCA), genetic algorithms and neural networks it was possible to differentiate between agar blanks and individual species which accounted for all the data. A total of eight unknowns were correctly discriminated into the bacterial groups. Conclusions: This is the first report of in vitro complex volatile pattern recognition and differentiation of anaerobic pathogens. Significance and Impact of the Study: These results suggest the potential for application of e.nose technology in early diagnosis of microbial pathogens of medical importance. [source] Sustainable consumption and production: Trends, challenges and options for the Asia-Pacific regionNATURAL RESOURCES FORUM, Issue 1 2010Wei Zhao Abstract This paper highlights current trends in consumption and production patterns in Asian developing countries and emerging economies. It describes the main challenges and opportunities for Asian countries making the transition towards sustainable consumption and production patterns. The main challenge for Asian economies is to address the unsustainable consumption patterns of urban consumers, which entails a policy shift from the current focus on pollution and inefficient industrial production. In view of future consumption trends and the global convergence of consumption patterns, the characteristics of the emerging ,global consumer class' are examined, with particular focus on urban ecological footprints and carbon emissions. Furthermore, the difference between urban and rural consumption is discussed, together with opportunities for low-carbon urban development in the megacities of Asian developing countries. To conclude, the paper presents an overview of current policy measures taken in Asian countries to green economic development and realise sustainable consumption and production patterns. [source] Dissecting components of population-level variation in seed production and the evolution of masting behaviorOIKOS, Issue 3 2003Walter D. Koenig Mast-fruiting or masting behavior is the cumulative result of the reproductive patterns of individuals within a population and thus involves components of individual variability, between-individual synchrony, and endogenous cycles of temporal autocorrelation. Extending prior work by Herrera, we explore the interrelationships of these components using data on individual seed production in 59 populations of plants from 24 species spanning a large range of annual variability, from species exhibiting strong masting to others with little annual variability in seed production. Estimates of population and individual variability were not biased by sample size or average overall seed production when based on untransformed seed production values, but these values declined as log-transformed seed production increased. Population variability was more strongly correlated with individual variability (r=0.86) than individual synchrony (r=0.73). These latter two components were also significantly correlated (r=0.45), but randomizations confirm that they need not covary closely. Thus, selection can act separately on inter-annual variability and between-individual synchrony. We illustrate the potential for such fine-tuned selection on seed production patterns by discussing several examples and by demonstrating significant differences in components of population-level variation in seed production among species related to their life-history. [source] Proteomic analysis of growth phase-dependent proteins of Streptococcus pneumoniaePROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 4 2006Kwang-Jun Lee Abstract Streptococcus pneumoniae is an important human pathogen that causes a variety of diseases, such as pneumonia, bacteremia, meningitis, otitis media, and sinusitis, in both adults and children. The global pattern of growth phase-dependent protein expression of S. pneumoniae during in vitro culture was analyzed using 2-DE combined with MALDI-TOF MS and LC/ESI-MS/MS. Several protein production patterns were observed at four time points throughout the growth stage, although some protein levels did not change significantly. We focused on the switch in protein expression at the transition from log growth phase to stationary phase. Proteins that were significantly induced or repressed at this point are likely to be involved in central intermediary metabolism, amino acid synthesis, nucleotide, and fatty acid metabolism, cell wall synthesis, protein degradation, and stress responses. This global expression profiling approach has revealed previously unrecognized relationships between proteins in the life of this pathogen. [source] Pollutant Emissions Management in an Existing Plant: The CHF3 Case,CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 2 2005M. N. Pantzali Abstract Changing production patterns towards waste reduction in a globalizing world can be considered a starting point towards sustainable development. The aim of the chemical plant designer is to reduce pollutant emissions, not by cleaning the effluents but by diminishing the production of the undesirable compounds. The case study examined is focused on reducing the CHF3 emission of an existing difluorochloromethane (HCFC-22) plant by allocating the source of the problem and trying to decrease byproduct emissions by reducing their production. The effect of the operating conditions on the formation rate of both the product and the byproduct of the plant is studied and it is proved that the optimum result is accomplished simply by reducing the residence time in the fluorination reactor, that is, without the need for extra investment and/or energy consumption, a solution highly desirable from an economic point of view. The results of the study were applied to an existing plant leading to 50,% reduction of the CHF3 emissions. [source] |