Home About us Contact | |||
Product Recovery (product + recovery)
Selected AbstractsLipase-Catalyzed Acyl Exchange of Soybean Phosphatidylcholine in n -Hexane: A Critical Evaluation of Both Acyl Incorporation and Product RecoveryBIOTECHNOLOGY PROGRESS, Issue 2 2005Anders F. Vikbjerg Lipase-catalyzed acidolysis was examined for the production of structured phospholipids in a hexane system. In a practical operation of the reaction system, the formation of lyso-phospholipids from hydrolysis is often a serious problem, as demonstrated from previous studies. A clear elucidation of the issue and optimization of the system are essential for the practical applications in reality. The effects of enzyme dosage, reaction temperature, solvent amount, reaction time, and substrate ratio were optimized in terms of the acyl incorporation, which led to the products, and lyso-phospholipids formed by hydrolysis, which led to the low yields. The biocatalyst used was the commercial immobilized lipase Lipozyme TL IM and substrates used were phosphatidylcholine (PC) from soybean and caprylic acid. A response surface design was used to evaluate the influence of selected parameters and their relationships on the incorporation of caprylic acid and the corresponding recovery of PC. Incorporation of fatty acids increased with increasing enzyme dosage, reaction temperature, solvent amount, reaction time, and substrate ratio. Enzyme dosage had the most significant effect on the incorporation, followed by reaction time, reaction temperature, solvent amount, and substrate ratio. However the parameters had also a negative influence on the PC recovery. Solvent amount had the most negative effect on recovery, followed by enzyme dosage, temperature, and reaction time. Individually substrate ratio had no significant effect on the PC recovery. Interactions were observed between different parameters. On the basis of the models, the reaction was optimized for the maximum incorporation and maximum PC recovery. With all of the considerations, the optimal conditions are recommended as enzyme dosage 29%, reaction time 50 h, temperature 54 °C, substrate ratio 15 mol/mol caprylic acid/PC, and 5 mL of hexane per 3 g substrate. No additional water is necessary. Under these conditions, an incorporation of caprylic acid up to 46% and recovery of PC up to 60% can be obtained from the prediction. The prediction was confirmed from the verification experiments. [source] Sulfated membrane adsorbers for economic pseudo-affinity capture of influenza virus particlesBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2009Lars Opitz Abstract Strategies to control outbreaks of influenza, a contagious respiratory tract disease, are focused mainly on prophylactic vaccinations in conjunction with antiviral medications. Currently, several mammalian cell culture-based influenza vaccine production processes are being established, such as the technologies introduced by Novartis Behring (Optaflu®) or Baxter International Inc. (Celvapan). Downstream processing of influenza virus vaccines from cell culture supernatant can be performed by adsorbing virions onto sulfated column chromatography beads, such as Cellufine® sulfate. This study focused on the development of a sulfated cellulose membrane (SCM) chromatography unit operation to capture cell culture-derived influenza viruses. The advantages of the novel method were demonstrated for the Madin Darby canine kidney (MDCK) cell-derived influenza virus A/Puerto Rico/8/34 (H1N1). Furthermore, the SCM-adsorbers were compared directly to column-based Cellufine® sulfate and commercially available cation-exchange membrane adsorbers. Sulfated cellulose membrane adsorbers showed high viral product recoveries. In addition, the SCM-capture step resulted in a higher reduction of dsDNA compared to the tested cation-exchange membrane adsorbers. The productivity of the SCM-based unit operation could be significantly improved by a 30-fold increase in volumetric flow rate during adsorption compared to the bead-based capture method. The higher flow rate even further reduced the level of contaminating dsDNA by about twofold. The reproducibility and general applicability of the developed unit operation were demonstrated for two further MDCK cell-derived influenza virus strains: A/Wisconsin/67/2005 (H3N2) and B/Malaysia/2506/2004. Overall, SCM-adsorbers represent a powerful and economically favorable alternative for influenza virus capture over conventional methods using Cellufine® sulfate. Biotechnol. Bioeng. 2009;103: 1144,1154. © 2009 Wiley Periodicals, Inc. [source] A review of pervaporation for product recovery from biomass fermentation processesJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2006Leland M Vane The original article to which this Erratum refers was published in Journal of Chemical Technology and Biotechnology80:603,629. [source] A review of pervaporation for product recovery from biomass fermentation processes,JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2005Leland M Vane Abstract Although several separation technologies are technically capable of removing volatile products from fermentation broths, distillation remains the dominant technology. This is especially true for the recovery of biofuels such as ethanol. In this paper, the status of an emerging membrane-based technology, called pervaporation, for this application is reviewed. Several issues and research priorities which will impact the ability of pervaporation to be competitive for biofuel recovery from fermentation systems are identified and discussed. They include: increased energy efficiency; reduction of capital cost for pervaporation systems; longer term trials with actual fermentation broths; optimized integration of pervaporation with fermentor; synergy of performing both alcohol recovery and solvent dehydration by pervaporation with dephlegmation fractional condensation technology; and updated economic analyses of pervaporation at various biofuel production scales. Pervaporation is currently viable for biofuel recovery in a number of situations, but more widespread application will be possible when progress has been made on these issues. Published in 2005 for SCI by John Wiley & Sons, Ltd. [source] Functional Properties of Improved Glycinin and ,-nglycinin FractionsJOURNAL OF FOOD SCIENCE, Issue 4 2004D. A. Rickert ABSTRACT: Glycinin and ,-conglycinin have unique functionality characteristics that contribute important properties in soy foods and soy ingredients. Limited functionality data have been published for glycinin and ,-conglycinin fractions produced in pilot-scale quantities. Protein extraction conditions were previously optimized for our pilotscale fractionation process to maximize protein solubilization and subsequent product recovery. Glycinin, ,-conglycinin, and intermediate (mixture of glycinin and ,-conglycinin) fractions were prepared using optimized-process (OP) extraction conditions (10:1 water-to-flake ratio, 45°C) and previous conditions termed Wu process (WP) (15:1, 20°C). Viscosity, solubility, gelling, foaming, emulsification capacity, and emulsification activity and stability of the fractionated proteins, and soy protein isolate (SPI) produced from the same defatted soy white flakes were compared to evaluate functional properties of these different protein fractions. Differential scanning calorimetry, sodium dodecylsulfate-polyacrylamide gel electrophoresis, and surface hydrophobicity data were used to interpret functionality differences. OP ,-conglycinin had more glycinin contamination than did the WP ,-conglycinin. OP and WP solubility profiles were each similar for respective glycinin and ,-conglycinin fractions. Emulsification activities and stabilities were higher for OP ,-conglycinin and OP intermediate fractions compared with respective WP fractions. ,-Conglycinin and SPI emulsification capacities (ECs) mirrored solubility profile, whereas glycinin ECs did not. OP glycinin had a higher foaming capacity than WP glycinin. OP and WP intermediate fraction apparent viscosities trended higher than those of other protein fractions. ,-Conglycinin dispersions at pH 3 and 7 produced firm gels at 80°C, whereas glycinin dispersions formed weaker gels at 99°C and did not gel at 80°C. [source] Aqueous two-phase systems strategies for the recovery and characterization of biological products from plantsJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 9 2010Oscar Aguilar Abstract The increasing interest of the biopharmaceutical industry to exploit plants as economically viable production systems is demanding the development of new downstream strategies to maximize product recovery. Aqueous two-phase systems (ATPSs) are a primary recovery technique that has shown great potential for the efficient extraction and purification of biological compounds. The present paper gives an overview of the efficient use of ATPS-based strategies for the isolation and partial purification of bioparticles from plant origin. Selected examples highlight the main advantages of this technique, i.e. scaling-up feasibility, process integration capability and biocompatibility. An overview of the recent approach of coupling ATPSs with traditional techniques to increase bioseparation process performance is discussed. A novel approach to characterization protein from plants combining ATPSs and two-dimensional electrophoresis (2-DE) is introduced as a tool for process development. In the particular case of products from plant origin, early success has demonstrated the potential application of ATPS-based strategies to address the major disadvantages of the traditional recovery and purification techniques. This literature review discloses the relevant contribution of ATPSs to facilitate the establishment of bioprocesses in the growing field of high-value products from plants. Copyright © 2010 Society of Chemical Industry [source] Efficient phase separation and product recovery in organic-aqueous bioprocessing using supercritical carbon dioxideBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2010Christoph Brandenbusch Abstract Biphasic hydrocarbon functionalizations catalyzed by recombinant microorganisms have been shown to be one of the most promising approaches for replacing common chemical synthesis routes on an industrial scale. However, the formation of stable emulsions complicates downstream processing, especially phase separation. This fact has turned out to be a major hurdle for industrial implementation. To overcome this limitation, we used supercritical carbon dioxide (scCO2) for both phase separation and product purification. The stable emulsion, originating from a stereospecific epoxidation of styrene to (S)-styrene oxide, a reaction catalyzed by recombinant Escherichia coli, could be destabilized efficiently and irreversibly, enabling complete phase separation within minutes. By further use of scCO2 as extraction agent, the product (S)-styrene oxide could be obtained with a purity of 81% (w/w) in one single extraction step. By combining phase separation and product purification using scCO2, the number of necessary workup steps can be reduced to one. This efficient and easy to use technique is generally applicable for the workup of biphasic biocatalytic hydrocarbon functionalizations and enables a cost effective downstream processing even on a large scale. Biotechnol. Bioeng. 2010;107:642,651. © 2010 Wiley Periodicals, Inc. [source] Bioproduction of the aroma compound 2-Phenylethanol in a solid,liquid two-phase partitioning bioreactor system by Kluyveromyces marxianusBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009Fang Gao Abstract The rose-like aroma compound 2-phenylethanol (2-PE) is an important fragrance and flavor ingredient. Several yeast strains are able to convert l -phenylalanine (l -phe) to 2-PE among which Kluyveromyces marxianus has shown promising results. The limitation of this process is the low product concentration and productivity primarily due to end product inhibition. This study explored the possibility and benefits of using a solid,liquid Two-Phase Partition Bioreactor (TPPB) system as an in situ product removal technique. The system applies polymer beads as the sequestering immiscible phase to partition 2-PE and reduce the aqueous 2-PE concentration to non-inhibitory levels. Among six polymers screened for extracting 2-PE, Hytrel® 8206 performed best with a partition coefficient of 79. The desired product stored in the polymer was ultimately extracted using methanol. A 3,L working volume solid,liquid batch mode TPPB using 500,g Hytrel® as the sequestering phase generated a final overall 2-PE concentration of 13.7,g/L, the highest reported in the current literature. This was based on a polymer phase concentration of 88.74,g/L and aqueous phase concentration of 1.2,g/L. Even better results were achieved via contact with more polymers (approximately 900,g) with the aqueous phase applying a semi-continuous reactor configuration. In this system, a final 2-PE concentration (overall) of 20.4,g/L was achieved with 1.4,g/L in the aqueous and 97,g/L in the polymer phase. The overall productivities of these two reactor systems were 0.38 and 0.43,g/L,h, respectively. This is the first report in the literature of the use of a polymer sequestering phase to enhance the bioproduction of 2-PE, and exceeds the performance of two-liquid phase systems in terms of productivity as well as ease of operation (no emulsions) and ultimate product recovery. Biotechnol. Bioeng. 2009; 104: 332,339 © 2009 Wiley Periodicals, Inc. [source] Use of a plant-derived enzyme template for the production of the green-note volatile hexanalBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2003Frank Schade Abstract Hexanal is a key organoleptic element of green-note that is found in both fragrances and flavors. We report a novel process for the production of hexanal using immobilized enzyme templates extracted from different plant sources in combination with hollow-fiber ultrafiltration for in situ separation. Enzyme templates, known to be responsible for the synthesis of hexanal from linoleic acid (18:2), were isolated from naturally enriched tissues including carnation petals, strawberry and tomato leaves. These templates were immobilized in an alginate matrix and used as a biocatalyst in a packed-bed bioreactor. Continuous product recovery was achieved using a hollow-fiber ultrafiltration unit. The effects of pH, reaction temperature, and substrate and enzyme concentrations were studied and their effects on hexanal generation identified and optimized. Utilizing optimized conditions, hexanal production 112-fold higher than endogenous steady-state levels in a corresponding amount of plant tissue could be achieved over a 30-minute period. Based on the reactor studies, product inhibition also appears to be an important factor for bioreactor-based hexanal production. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 84: 265,273, 2003. [source] Removal of endogenous retrovirus-like particles from CHO-cell derived products using Q sepharose fast flow chromatography,BIOTECHNOLOGY PROGRESS, Issue 4 2009Daniel M. Strauss Abstract Retrovirus-like particles (RVLPs) that are expressed during the production of monoclonal antibodies in Chinese hamster ovary (CHO) cell cultures must be removed during product recovery. Anion exchange chromatography (AEX) performed in product flow-through mode, a common component in the purification of monoclonal antibodies, has been shown to provide robust removal of a related retrovirus model, but it's ability to remove the actual RVLP impurities has not been directly investigated. We have determined the ability of a typical Q sepharose process to remove actual CHO RVLP impurities. Using small scale experiments with three model antibodies, we observe that this AEX process is capable of effectively removing both in-process and spiked RVLPs from different feedstocks containing different mAb products. In addition, we show that this AEX process also achieves a similarly high degree of RVLP removal during large scale manufacturing operations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |