Product Molecules (product + molecule)

Distribution by Scientific Domains


Selected Abstracts


Monitoring structural transformations in crystals.

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 5 2003

The structural changes in a crystal of 5-benzylidene-2-(4-chlorobenzyl)cyclopentanone during [2,+,2]-photodimerization were monitored by means of X-ray diffraction. It was observed that the monomers moved gradually from the position occupied in the crystal at the initial stage of the photoreaction and the dimers moved towards the position assumed at the final step. The movements of the molecules possess a rotational component. Moreover, with the progress of the phototransformation the monomers in the reacting pair gradually move closer and change their relative orientation to resemble more the product molecule. The behaviour of the molecules and also the variation of the cell constants for the studied compound were compared with data for 5-benzylidene-2-benzylcyclopentanone. [source]


Free and ATP-bound structures of Ap4A hydrolase from Aquifex aeolicus V5

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2010
Jeyaraman Jeyakanthan
Asymmetric diadenosine tetraphosphate (Ap4A) hydrolases degrade the metabolite Ap4A back into ATP and AMP. The three-dimensional crystal structure of Ap4A hydrolase (16,kDa) from Aquifex aeolicus has been determined in free and ATP-bound forms at 1.8 and 1.95,Å resolution, respectively. The overall three-dimensional crystal structure of the enzyme shows an ,,,-sandwich architecture with a characteristic loop adjacent to the catalytic site of the protein molecule. The ATP molecule is bound in the primary active site and the adenine moiety of the nucleotide binds in a ring-stacking arrangement equivalent to that observed in the X-ray structure of Ap4A hydrolase from Caenorhabditis elegans. Binding of ATP in the active site induces local conformational changes which may have important implications in the mechanism of substrate recognition in this class of enzymes. Furthermore, two invariant water molecules have been identified and their possible structural and/or functional roles are discussed. In addition, modelling of the substrate molecule at the primary active site of the enzyme suggests a possible path for entry and/or exit of the substrate and/or product molecule. [source]


Structural transformations in organic crystals during photochemical reactions

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 10 2004
Ilona Turowska-Tyrk
Abstract In the 1980s and 1990s, x-ray studies of the photochemical reaction course in crystals dealt with the analysis of changes in cell constants or movements of atom groups inside molecules. This review presents the results of crystallographic studies on the monitoring of the behaviour of whole molecules in organic crystals during photochemical reactions. Papers on this subject started to appear only a few years ago. The studies showed quantitatively that reactant and product molecules do not take a fixed position in a crystal during the reaction. The product molecules move smoothly to a position assumed in the pure product crystal and the reactant molecules move from a position occupied in the pure reactant crystal. Moreover, with the reaction progress the adjacent reactant molecules gradually come closer and change their mutual orientation to resemble the product. The analysis of the photoreaction kinetics in crystals is also presented. Copyright © 2004 John Wiley & Sons, Ltd. [source]


High-resolution magic-angle spinning NMR for the identification of reaction products directly from thin-layer chromatography spots

MAGNETIC RESONANCE IN CHEMISTRY, Issue 10 2007
Scott A. Bradley
Abstract We have investigated the prospect of identifying organic reaction products directly from separated thin-layer chromatography (TLC) spots with high-resolution magic-angle spinning (HRMAS) NMR. The concept is to use the TLC spots for NMR analysis so that spectra can be obtained before the reaction is worked up, but without having to elute the product from the TLC stationary phase. Thus, the separated spot is scraped from the plate, transferred to an HRMAS sample rotor, and suspended with a deuterated solvent. Herein, we describe the effects of having the stationary phase present during NMR acquisition. Using a Varian 4 mm gHX Nanoprobe and rotenone as a test compound, we found that the presence of the stationary phase during NMR acquisition resulted in (i) a large, broad ,background' signal near 4.6 ppm and (ii) a decrease in the signal-to-noise ratio due to the adsorption of the product molecules to the adsorbent. However, both effects could be adequately and conveniently eliminated. The background signal was removed by using either a CPMG pulse sequence or chemical exchange. The adsorption was avoided by using a more polar solvent system. Finally, we found that spectra with good signal-to-noise ratio and resolution could be acquired in a matter of minutes even for cases of limited product concentration. Therefore, we believe the technique has value and provides the organic chemist with another option to obtain NMR data critical for structural elucidation or verification. Copyright © 2007 John Wiley & Sons, Ltd. [source]


HD in the primordial gas

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2000
D. R. Flower
We study the role of HD in the thermal balance of the primordial gas, beyond the redshift, z, at which the temperatures of radiation and matter have decoupled (z , 300). Statistical arguments are used to derive the rate constants for the forward and reverse reactions, D+(H2, HD)H+, involving reactant and product molecules in excited rotational states. The degree of chemical fractionation of HD is enhanced, compared with the value calculated by taking account of reactions between ground-state molecules only, by a factor of about 2. In spite of its low abundance (10,3), relative to H2, HD contributes comparably to the rate of heating of the gas, through rotationally inelastic collisions with H and He. The much larger rate coefficients for collisional population transfer within HD, compared with H2, and the tighter rotational level spacing are responsible for this finding. We conclude that HD is about as important as H2 in the thermal balance of the primordial gas. [source]


Monitoring structural transformations in crystals.

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 3 2008

Variations in crystal and molecular structures, brought about by the intramolecular [4,+,4] photocycloaddition of bi(anthracene-9,10-dimethylene), were monitored using X-ray diffraction. The cell volume increased by 0.8% until the reaction was ca 40% complete, and afterwards decreased by 1.6% during the remainder of the photoreaction. The changes of the a and b lattice parameters were correlated with the changes of the molecular shape and packing. The distance between the directly reacting C atoms varied in a manner not observed for other photochemical reactions in crystals. It was constant until ca 20% photoreaction progress, then decreased, and later stabilized from ca 40% photoreaction progress. This phenomenon was explained by interplay between stress resulting from the presence of product molecules and the rigidity of reactant molecules. Changes of the orientation of molecules during the photoreaction were smaller than in the case of other monitored photochemical reactions in crystals owing to similarities in the shape and packing of reactant and product molecules. Weak C,H..., hydrogen bonds exist among reactant molecules in the pure reactant and partly reacted crystals. [source]


Monitoring structural transformations in crystals.

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 1 2006

Structural changes taking place in a crystal during an intramolecular photochemical reaction [the Yang photocyclization of the ,-methylbenzylamine salt with 1-(4-carboxybenzoyl)-1-methyladamantane] were monitored step-by-step using X-ray structure analysis. This is the first example of such a study carried out for an intramolecular photochemical reaction. During the photoreaction, both the reactant and product molecules change their orientation, but the reactant changes more rapidly after the reaction is about 80% complete. The distance between directly reacting atoms in the reactant molecule is almost constant until about 80% reaction progress and afterwards decreases. The torsion angle defined by the reactant atoms that form the cyclobutane ring also changes in the final stages of the photoreaction. These phenomena are explained in terms of the influence of many product molecules upon a small number of reacting molecules. The adamantane portion shifts more than the remaining part of the anionic reactant species during the reaction, which is explained in terms of hydrogen bonding. The structural changes are accompanied by changes in the cell constants. The results obtained in the present study are compared with analogous results published for intermolecular reactions. [source]