Home About us Contact | |||
Prostate Cancer Xenografts (prostate + cancer_xenograft)
Selected AbstractsAntiandrogen withdrawal syndrome and alternative antiandrogen therapy associated with the W741C mutant androgen receptor in a novel prostate cancer xenograftTHE PROSTATE, Issue 3 2010Naoki Terada Abstract BACKGROUND The mechanisms underlying antiandrogen withdrawal syndrome (AWS) and alternative antiandrogen therapy (AAT) effectiveness were assumed to be mutations in the androgen receptor (AR), which resulted in an altered response to antiandrogens. The aim of the present study was to test this assumption using the novel prostate cancer xenograft model KUCaP-1 harboring the W741C mutant AR (Yoshida et al., Cancer Res 2005; 65(21): 9611,9616). METHODS Mice bearing xenograft tumors were castrated, and the long-term sequential changes in tumor volume were observed. To determine whether AWS was observed in this model, bicalutamide (BCL) was orally administered to the castrated mice and then withdrawn. The effect of flutamide (FLT) on the W741C mutant AR was examined with transactivation assays in vitro and with the oral administration of FLT to non-castrated mice harboring KUCaP-1 in vivo. The AAT efficacy against KUCaP-1 was evaluated by changing BCL with FLT. RESULTS KUCaP-1 regressed significantly after castration and did not re-grow. KUCaP-1 treated with BCL continued to grow even after castration and started regressing 2 months after BCL withdrawal, replicating clinically recognized AWS. The antagonistic effect of FLT against the W741C mutant AR was revealed in vitro and in vivo. AAT with FLT suppressed tumor growth after BCL withdrawal. CONCLUSIONS KUCaP-1 was an entirely androgen-dependent xenograft and mimicked the clinical phenomena of AWS and AAT caused by the agonistic and antagonistic activity of BCL and FLT, respectively. KUCaP-1 could be an in vivo model for screening novel antiandrogens for the treatment of BCL resistant prostate cancer harboring the W741C mutation in the AR. Prostate 70: 252,261, 2010. © 2009 Wiley-Liss, Inc. [source] Neuroendocrine cell differentiation in the CWR22 human prostate cancer xenograft: Association with tumor cell proliferation prior to recurrenceTHE PROSTATE, Issue 2 2004Wendy J. Huss Abstract BACKGROUND Neuroendocrine (NE) cell differentiation is proposed to facilitate prostate cancer (CaP) recurrence following androgen deprivation through secretion by NE cells of growth factors and neuropeptides that support survival and proliferation of CaP cells and vasculature. METHODS The effect of androgen deprivation on NE differentiation and tumor cell proliferation in the CWR22 model of human CaP was determined by immunohistochemical analysis of the NE cell marker synaptophysin and the cell proliferation marker Ki67. RESULTS A significant increase in the number of NE cells was observed in CWR22 tumors between 28 and 66 days after castration compared to intact mice, that preceded the increase in tumor cell proliferation that began 70 days after androgen deprivation heralding recurrence. There was a significant positive correlation between the number of tumor-associated NE cells and proliferating CaP cells in tumors from mice after 28,34 days of androgen withdrawal. CONCLUSION In the CWR22 model, androgen deprivation induces an increase in tumor-associated NE cells prior to increased tumor cell proliferation, with NE cells possibly promoting tumor survival and recurrent disease. © 2004 Wiley-Liss, Inc. [source] S-allylcysteine, a water-soluble garlic derivative, suppresses the growth of a human androgen-independent prostate cancer xenograft, CWR22R, under in vivo conditionsBJU INTERNATIONAL, Issue 4 2007Qingjun Chu OBJECTIVE To evaluate the effect of S-allylcysteine (SAC) on CWR22R, a human androgen-independent (AI) prostate cancer xenograft, in nude mice. Despite extensive research worldwide there is no effective way to control the growth of prostate cancer, and we previously reported that SAC and S-allylmercaptocysteine (SAMC), two water-soluble derivatives of garlic, inhibit cancer cell invasion through restoration of E-cadherin expression in vitro. MATERIALS AND METHODS The effects of SAC on tumour cell proliferation markers such as Ki-67 and proliferating cell nuclear antigen, and apoptotic regulators including Bcl-2 and cleaved caspase-3, were assessed by immunohistochemical staining. The inhibitory effects of SAC on prostate cancer invasion was examined by immunoreactivity of E-cadherin and its binding proteins ,, , and ,-catenins. The serum prostate-specific antigen (PSA) level at three different times (initiation, middle and end of treatment) and toxicity of SAC on several organs after treatment were assessed. RESULTS Treatment with SAC resulted in inhibition of the growth of CWR22R, with no detectable toxic effect on nude mice. The SAC-induced growth reduction was correlated with a concurrent reduction in serum PSA level and proliferation rate of xenografts, together with an inhibition of invasion through the restoration of E-cadherin and ,-catenin expression. Furthermore, the apoptotic rate of SAC-treated tumours increased together with a decrease in Bcl-2 and increase in cleaved caspase-3. CONCLUSION These results suggest that this garlic-derived compound might be a potential therapeutic agent for suppressing AI prostate cancer. [source] Amplification and overexpression of prosaposin in prostate cancerGENES, CHROMOSOMES AND CANCER, Issue 4 2005Shahriar Koochekpour We identified prosaposin (PSAP) as a secreted protein expressed in androgen-independent (AI) prostate cancer cells by cloning/sequencing, after probing a PC-3 cDNA library expressed in the ,TriplEx phagemid expression vector with a polyclonal rabbit antibody generated against pooled human seminal plasma. PSAP is a neurotrophic molecule; its deficiency or inactivation has proved to be lethal in man and mice, and in mice, it leads to abnormal development and atrophy of the prostate gland, despite normal testosterone levels. We used Southern hybridization, quantitative real-time polymerase chain reaction, and/or single nucleotide polymorphism (SNP) array analysis, and we now report the genomic amplification of PSAP in the metastatic AI prostate cancer cell lines, PC-3, DU-145, MDA-PCa 2b, M-12, and NCI-H660. In addition, by using SNP arrays and a set of 25 punch biopsy samples of human prostate cancer xenografts (LAPC3, LuCaP 23.1, 35, 49, 58, 73, 77, 81, 86.2, 92.1, 93, 96, 105, and 115), lymph nodes, and visceral-organ metastases, we detected amplification of the PSAP locus (10q22.1) in LuCaP 58 and 96 xenografts and two lymph node metastases. In addition, AI metastatic prostate cancer cell lines C4-2B and IA8-ARCaP over-expressed PSAP mRNA without evidence of genomic amplification. Taken together with prior data that demonstrated the growth-, migration-, and invasion-promoting activities, the activation of multiple signal transduction pathways, and the antiapoptotic effect of PSAP (or one of its active domains, saposin C) in prostate cancer cells, our current observation of PSAP amplification or overexpression in prostate cancer suggests, for the first time, a role for this molecule in the process of carcinogenesis or cancer progression in the prostate. © 2005 Wiley-Liss, Inc. [source] Liposomal gemcitabine (GemLip),efficient drug against hormone-refractory Du145 and PC-3 prostate cancer xenograftsTHE PROSTATE, Issue 11 2009Peter Jantscheff Abstract BACKGROUND Gemcitabine (Gemc) is an efficient chemotherapeutic drug in various cancer types (e.g., pancreas) but has only limited effects on hormone-refractory prostate cancer (HRPCa). Since HRPCa cells are highly sensitive to even low doses of Gemc in vitro, the lack of clinical effects might be due to rapid degradation of Gemc by deaminases combined with impaired accumulation in tumor tissue and PCa cells. Liposomal formulation (GemLip) is expected to protect the entrapped cytotoxic substance from enzymatic degradation and furthermore augment its accumulation within tumor tissues due to an enhanced permeability of the tumor vessels. METHODS Anti-tumoral and anti-metastatic activity of GemLip and Gemc were investigated in two luciferase-expressing, human hormone-refractory PC-3 and Du145 HRPCa xenograft models in immunodeficient mice. Tumor growth was monitored by in vivo luminescence imaging (orthotopic) or callipering (subcutaneous). Anti-metastatic effects of treatment were determined by in vitro luciferase assay of the tissues. RESULTS Tumor growth of subcutaneous Du145 xenografts was significantly inhibited only by GemLip (8 mg/kg: P,=,0.014 and 6 mg/kg: P,=,0.011) but not by conventional Gemc (360 mg/kg). In contrast, growth of orthotopic PC-3 xenografts was significantly inhibited by both, GemLip (P,=,0.041) and Gemc (P,=,0.002). The drugs furthermore strongly reduced spleen and liver metastases in this model. CONCLUSIONS As shown by the very low efficient concentration of GemLip, liposomal entrapment of Gemc greatly enhances its activity. GemLip has, even at very low doses, a significant anti-tumoral and anti-metastatic therapeutic effect in HRPCa xenografts in vivo and was beneficial even when the conventional Gemc failed. Prostate 69:1151,1163, 2009. © 2009 Wiley-Liss, Inc. [source] The prostatic environment suppresses growth of androgen-independent prostate cancer xenografts: An effect influenced by testosteroneTHE PROSTATE, Issue 11 2009Karin Jennbacken Abstract BACKGROUND Interactions between prostate cancer cells and their surrounding stroma play an important role in the growth and maintenance of prostate tumors. To elucidate this further, we investigated how growth of androgen-dependent (AD) LNCaP and androgen-independent (AI) LNCaP-19 prostate tumors was affected by different microenvironments and androgen levels. METHODS Tumor cells were implanted subcutaneously and orthotopically in intact and castrated immunodeficient mice. Orthotopic tumor growth was followed by magnetic resonance imaging (MRI). Gene expression in the tumors was evaluated by means of microarray analysis and microvessel density (MVD) was analyzed using immunohistochemistry. RESULTS The results showed that LNCaP-19 tumors grew more rapidly at the subcutaneous site than in the prostate, where tumors were obviously inhibited. Castration of the mice did not affect ectopic tumors but did result in increased tumor growth in the prostatic environment. This effect was reversed by testosterone treatment. In contrast to LNCaP-19, the LNCaP cells grew rapidly in the prostate and castration reduced tumor development. Gene expression analysis of LNCaP-19 tumors revealed an upregulation of genes, inhibiting tumor growth (including ADAMTS1, RGS2 and protocadherin 20) and a downregulation of genes, promoting cell adhesion and metastasis (including N-cadherin and NRCAM) in the slow-growing orthotopic tumors from intact mice. CONCLUSIONS The results show that the prostatic environment has a varying impact on AD and AI tumor xenografts. Data indicate that the androgen-stimulated prostatic environment limits growth of orthotopic AI tumors through induction of genes that inhibit tumor growth and suppression of genes that promote cell adhesion and metastasis. Prostate 69:1164,1175, 2009. © 2009 Wiley-Liss, Inc. [source] Bcl-2 mediated modulation of vascularization in prostate cancer xenografts,THE PROSTATE, Issue 5 2009Yoshihisa Sakai Abstract PURPOSE We previously demonstrated that Bcl-2 overexpression enhances the radiation resistance of PC-3 human prostate cancer cells and xenografts by inhibiting apoptosis, increasing proliferation, and promoting angiogenesis. To further elucidate the relationship between Bcl-2 expression and the angiogenic potential of PC-3-Bcl-2 cells, tumorigenicity, angiogenesis, and lymphangiogenesis were evaluated and compared in a Bcl-2 overexpressing clone in vitro and in vivo. EXPERIMENTAL DESIGN Human prostate cancer cells over expressing Bcl-2 were studied in vitro and in vivo to determine the angiogenic and lymphangiogenic properties of these cells. RESULTS Increased Bcl-2 expression enhanced the tumorigenicity of prostate cancer xenografts. It also enhanced the expression and secretion of key angiogenic and lymphangiogenic factors that stimulated the synthesis of CD31-positive blood vessels and LYVE-1 positive lymphatics. Specifically, the increased angiogenic and lymphangiogenic potential correlated with increased serum levels of basic fibroblast growth factor (bFGF), interleukin 8 (CXCL8), and matrix metalloproteinase (MMP 9). In vitro analysis demonstrated that Bcl-2 expressing tumor cells secreted bFGF and vascular endothelial growth factor (VEGF) into culture supernatants. Microarray analysis of Bcl-2 expressing PC-3 cells demonstrated increased transcription of genes involved in metabolism, such as interleukins, growth factors, tumor necrosis factors (TNF) family members, and peptidases. CONCLUSIONS Together, these results demonstrate that Bcl-2 can regulate tumoral angiogenesis and lymphangiogenesis and suggest that therapy targeted at Bcl-2 expression, angiogenesis, and lymphangiogenesis may synergistically modulate tumor growth and confirm that Bcl-2 is a pivotal target for cancer therapy. Prostate 69:459,470, 2009. © 2008 Wiley-Liss, Inc. [source] Prolonging androgen sensitivity in prostate cancer , a role for COX inhibitors?ANZ JOURNAL OF SURGERY, Issue 9 2009Andrew Richards Abstract Background:, Advanced prostate cancer has long been known to respond to androgen deprivation, but disease inevitably progresses to become androgen independent. Lengthening the responsive period is an important, yet underinvestigated, clinical goal. This study aims to determine whether cyclooxygenase-2 (COX-2) inhibitors are potentially useful agents in prolonging androgen sensitivity. Methods:, The expression of COX-2 in human prostate surgical specimens, both benign and malignant, androgen dependent and independent, was determined by immunohistochemistry. Nude mice, in which prostate cancer xenografts had been established, were castrated and randomized to receive either COX-2 inhibitor or vehicle for 8 weeks. Time to androgen independence (AIPC), growth rate and rate of PSA rise were compared between groups. COX-2 expression, at the mRNA and protein level, was determined in the native xenograft cell line and in tissues of varying androgen sensitivity derived from the xenografts. Results:, In human tissues, COX-2 protein was expressed in prostate epithelium and was upregulated in prostate cancer and remained upregulated after androgen ablation and in the androgen-independent state. Tissue obtained from the LNCaP xenograft model showed variable COX-2 expression, with some evidence of downregulation in AIPC. The addition of a COX-2 inhibitor to castration does not lengthen the time to AIPC (P= 0.53), rate of tumour growth (P= 0.59) or rate of PSA rise (P= 0.34) in the LNCaP xenograft model. Conclusion:, This study does not support a role for COX-2 inhibitors in prolonging androgen responsiveness in prostate cancer. [source] |