Probit Models (probit + models)

Distribution by Scientific Domains


Selected Abstracts


Testing for Interaction in Binary Logit and Probit Models: Is a Product Term Essential?

AMERICAN JOURNAL OF POLITICAL SCIENCE, Issue 1 2010
William D. Berry
Political scientists presenting binary dependent variable (BDV) models often hypothesize that variables interact to influence the probability of an event, Pr(Y). The current typical approach to testing such hypotheses is (1) estimate a logit or probit model with a product term, (2) test the hypothesis by determining whether the coefficient for this term is statistically significant, and (3) characterize the nature of any interaction detected by describing how the estimated effect of one variable on Pr(Y) varies with the value of another. This approach makes a statistically significant product term necessary to support the interaction hypothesis. We show that a statistically significant product term is neither necessary nor sufficient for variables to interact meaningfully in influencing Pr(Y). Indeed, even when a logit or probit model contains no product term, the effect of one variable on Pr(Y) may be strongly related to the value of another. We present a strategy for testing for interaction in a BDV model, including guidance on when to include a product term. [source]


Bayesian Variable Selection in Multinomial Probit Models to Identify Molecular Signatures of Disease Stage

BIOMETRICS, Issue 3 2004
Naijun Sha
Summary Here we focus on discrimination problems where the number of predictors substantially exceeds the sample size and we propose a Bayesian variable selection approach to multinomial probit models. Our method makes use of mixture priors and Markov chain Monte Carlo techniques to select sets of variables that differ among the classes. We apply our methodology to a problem in functional genomics using gene expression profiling data. The aim of the analysis is to identify molecular signatures that characterize two different stages of rheumatoid arthritis. [source]


Medical student indebtedness and the propensity to enter academic medicine

HEALTH ECONOMICS, Issue 2 2003
Marc FoxArticle first published online: 22 MAY 200
Abstract This paper considers the potential impact of medical school indebtedness and other variables on the propensity of US doctors to enter academic medicine. Probit models provide some evidence that indebtedness reduces the likelihood that physicians will choose academic medicine as their primary activity. Nevertheless, the magnitude of this effect is not large. As indebtedness may be endogenous, the probits are rerun using an instrumental variables approach. These estimates imply that over time indebtedness may have an important impact on the propensity of physicians to enter academic medicine. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Health Assimilation Patterns Amongst Australian Immigrants*

THE ECONOMIC RECORD, Issue 260 2007
NICHOLAS BIDDLE
This paper compares the health of Australian immigrants with that of the Australian-born population and examines the extent to which differences vary with time since migration. Health is measured using self-reports of chronic diseases from three national health surveys. Probit models are used to estimate the health effects of immigrant arrival cohorts, years since migration and country of birth. We find that the health of Australian immigrants is better than the Australian-born population, but the longer immigrants spend in Australia, the closer their health approximates that of the Australian-born population. There are variations for different immigrant groups and for particular chronic diseases. [source]


Why Adopt Codes of Good Governance?

CORPORATE GOVERNANCE, Issue 1 2008
A Comparison of Institutional, Efficiency Perspectives
ABSTRACT Manuscript Type: Empirical Research Question/Issue: Given the global diffusion and the relevance of codes of good governance, the aim of this article is to investigate if the main reason behind their proliferation in civil law countries is: (i) the determination to improve the efficiency of the national governance system; or (ii) the will to "legitimize" domestic companies in the global financial market without radically improving the governance practices. Research Findings/Insights: We collected corporate governance codes developed worldwide at the end of 2005, and classified them according to the country's legal system (common or civil law). Then, we made a comparative analysis of the scope, coverage, and strictness of recommendations of the codes. We tested differences between common law and civil law countries using t-tests and probit models. Our findings suggest that the issuance of codes in civil law countries be prompted more by legitimation reasons than by the determination to improve the governance practices of national companies. Theoretical/Academic Implications: The study contributes to enriching our knowledge on the process of reinvention characterizing the diffusion of new practices. Our results are consistent with a symbolic perspective on corporate governance, and support the view that diffusing practices are usually modified or "reinvented" by adopters. Practitioner/Policy Implications: Our results support the idea that the characteristics of the national corporate governance system and law explain the main differences among the coverage of codes. This conclusion indicates the existence of a strong interplay between hard and soft law. [source]


Bayesian Estimation of Limited Dependent Variable Spatial Autoregressive Models

GEOGRAPHICAL ANALYSIS, Issue 1 2000
James P. LeSage
A Gibbs sampling (Markov chain Monte Carlo) method for estimating spatial autoregressive limited dependent variable models is presented. The method can accommodate data sets containing spatial outliers and general forms of non-constant variance. It is argued that there are several advantages to the method proposed here relative to that proposed and illustrated in McMillen (1992) for spatial probit models. [source]


Proximity to death and participation in the long-term care market

HEALTH ECONOMICS, Issue 8 2009
France Weaver
Abstract The extent to which increasing longevity increases per capita demand for long-term care depends on the degree to which utilization is concentrated at the end of life. We estimate the marginal effect of proximity to death, measured by being within 2 years of death, on the probabilities of nursing home and formal home care use, and we determine whether this effect differs by availability of informal care , i.e. marital status and co-residence with an adult child. The analysis uses a sample of elderly aged 70+from the 1993,2002 Health and Retirement Study. Simultaneous probit models address the joint decisions to use long-term care and co-reside with an adult child. Overall, proximity to death significantly increases the probability of nursing home use by 50.0% and of formal home care use by 12.4%. Availability of informal support significantly reduces the effect of proximity to death. Among married elderly, proximity to death has no effect on institutionalization. In conclusion, proximity to death is one of the main drivers of long-term care use, but changes in sources of informal support, such as an increase in the proportion of married elderly, may lessen its importance in shaping the demand for long-term care. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Religious Involvement and the Use of Mental Health Care

HEALTH SERVICES RESEARCH, Issue 2 2006
Katherine M. Harris
Objectives. To examine the association between religious involvement and mental health care use by adults age 18 or older with mental health problems. Methods. We used data from the 2001,2003 National Surveys on Drug Use and Health. We defined two subgroups with moderate (n=49,902) and serious mental or emotional distress (n=14,548). For each subgroup, we estimated a series of bivariate probit models of past year use of outpatient care and prescription medications using indicators of the frequency of religious service attendance and two measures of the strength and influence of religious beliefs as independent variables. Covariates included common Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, disorders symptoms, substance use and related disorders, self-rated health status, and sociodemographic characteristics. Results. Among those with moderate distress, we found some evidence of a positive relationship between religious service attendance and outpatient mental health care use and of a negative relationship between the importance of religious beliefs and outpatient use. Among those with serious distress, use of outpatient care and medication was more strongly associated with service attendance and with the importance of religious beliefs. By contrast, we found a negative association between outpatient use and the influence of religious beliefs on decisions. Conclusion. The positive relationship between religious service participation and service use for those with serious distress suggests that policy initiatives aimed at increasing the timely and appropriate use of mental health care may be able to build upon structures and referral processes that currently exist in many religious organizations. [source]


The contribution of domestic and external factors to emerging market currency crises: an early warning systems approach,

INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, Issue 3 2007
Steven B. Kamin
Abstract In this paper, a modified ,early warning system' (EWS) approach is developed to identify the roles of domestic and external factors in emerging market crises. Several probit models of currency crises were estimated for 26 emerging market countries. These models were used to identify the separate contributions to the probabilities of crisis of domestic and external variables. We found that, relative to domestic factors, adverse external shocks and large external imbalances contributed little to the average estimated probability of crisis in emerging market countries, but accounted for much more of the spikes in the probability of crisis estimated to occur during actual crisis years. We interpret these results to suggest that while, on average over time, domestic factors have tended to contribute to much of the underlying vulnerability of emerging market countries, adverse swings in external factors may have been important in pushing economies ,over the edge' and into currency crisis. In consequence, the costs of giving up exchange rate flexibility through adoption of strongly fixed exchange rate regimes,e.g. currency boards or dollarization,may be quite high for some countries. Published in 2007 by John Wiley & Sons, Ltd. [source]


The Human Rights Effects of World Bank Structural Adjustment, 1981,2000

INTERNATIONAL STUDIES QUARTERLY, Issue 2 2006
M. RODWAN ABOUHARB
Does the implementation of a World Bank structural adjustment agreement (SAA) increase or decrease government respect for human rights? Neoliberal theory suggests that SAAs improve economic performance, generating better human rights practices. Critics contend that the implementation of structural adjustment conditions causes hardships and higher levels of domestic conflict, increasing the likelihood that regimes will use repression. Bivariate probit models are used to account for World Bank loan selection criteria when estimating the human rights consequences of structural adjustment. Using a global, comparative analysis for the 1981,2000 period, we examine the effects of structural adjustment on government respect for citizens' rights to freedom from torture, political imprisonment, extra-judicial killing, and disappearances. The findings show that World Bank SAAs worsen government respect for physical integrity rights. [source]


Parking difficulty and parking information system technologies and costs

JOURNAL OF ADVANCED TRANSPORTATION, Issue 2 2008
Hualiang (Harry) Teng
Before the implementation of a parking information system, it is necessary to evaluate the parking difficulty, technology choice, and system costs. In this study, the parking problem was quantified by asking parkers to express their parking difficulties in five scaled levels from the least to the most difficult. An ordered Probit model was developed to identify the factors that influence a parker to feel the parking difficulty. The results indicate that the amount of parking information parkers had before their trips was directly related to their parking search time, which in turn, influenced their perceptions of parking difficulty. Parkers' preferences to parking information technologies were identified based on developing binary and multinomial probit models. The results indicate that personal business trips and older persons would like to use the kiosk, while the more educated and males would not. Trips with shopping and social/recreation purposes and the drivers who had visited the destination areas frequently would like to choose roadside display. Drivers who had planned their parking and had Internet access would use in-vehicle device. The system cost was estimated based on the cost for each component of the system. The results show that providing en-route parking search information through roadside displays is more expensive than providing pre-trip information through a web site. [source]


A comparison between multivariate Slash, Student's t and probit threshold models for analysis of clinical mastitis in first lactation cows

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 5 2006
Y-M. Chang
Summary Robust threshold models with multivariate Student's t or multivariate Slash link functions were employed to infer genetic parameters of clinical mastitis at different stages of lactation, with each cow defining a cluster of records. The robust fits were compared with that from a multivariate probit model via a pseudo-Bayes factor and an analysis of residuals. Clinical mastitis records on 36 178 first-lactation Norwegian Red cows from 5286 herds, daughters of 245 sires, were analysed. The opportunity for infection interval, going from 30 days pre-calving to 300 days postpartum, was divided into four periods: (i) ,30 to 0 days pre-calving; (ii) 1,30 days; (iii) 31,120 days; and (iv) 121,300 days of lactation. Within each period, absence or presence of clinical mastitis was scored as 0 or 1 respectively. Markov chain Monte Carlo methods were used to draw samples from posterior distributions of interest. Pseudo-Bayes factors strongly favoured the multivariate Slash and Student's t models over the probit model. The posterior mean of the degrees of freedom parameter for the Slash model was 2.2, indicating heavy tails of the liability distribution. The posterior mean of the degrees of freedom for the Student's t model was 8.5, also pointing away from a normal liability for clinical mastitis. A residual was the observed phenotype (0 or 1) minus the posterior mean of the probability of mastitis. The Slash and Student's t models tended to have smaller residuals than the probit model in cows that contracted mastitis. Heritability of liability to clinical mastitis was 0.13,0.14 before calving, and ranged from 0.05 to 0.08 after calving in the robust models. Genetic correlations were between 0.50 and 0.73, suggesting that clinical mastitis resistance is not the same trait across periods, corroborating earlier findings with probit models. [source]


Unemployment and liquidity constraints

JOURNAL OF APPLIED ECONOMETRICS, Issue 3 2007
Vassilis A. Hajivassiliou
We present a dynamic framework for the interaction between borrowing (liquidity) constraints and deviations of actual hours from desired hours, both measured by discrete-valued indicators, and estimate it as a system of dynamic binary and ordered probit models with panel data from the Panel Study of Income Dynamics. We analyze a household's propensity to be liquidity constrained by means of a dynamic binary probit model. We analyze qualitative aspects of the conditions of employment, namely whether the household head is involuntarily overemployed, voluntarily employed, or involuntarily underemployed or unemployed, by means of a dynamic ordered probit model. We focus on the possible interaction between the two types of constraints. We estimate these models jointly using maximum simulated likelihood, where we allow for individual random effects along with an autoregressive process for the general error term in each equation. A novel feature of our method is that it allows for the random effects to be correlated with regressors in a time-invariant fashion. Our results provide strong support for the basic theory of constrained behavior and the interaction between liquidity constraints and exogenous constraints on labor supply. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Does altruism play a role in determining U.S. consumer preferences and willingness to pay for natural and regionally produced beef?

AGRIBUSINESS : AN INTERNATIONAL JOURNAL, Issue 2 2009
Wendy J. Umberger
An area of increasing differentiation among meat products relates to the source-of-origin and types of production methods used to raise the animals. Consumer data collected from a U.S. national online survey was used to estimate the factors helping explain consumers' willingness to purchase and pay a higher premium for two natural and regionally produced beef products: ground beef and USDA (United States Department of Agriculture) Choice rib eye steaks. Consumer preferences for natural and regionally produced beef are shown to be motivated by a combination of perceptions of personal benefits and altruistic factors. Additionally, the results of probit models indicate that the probability a consumer will pay more or less of a premium depends on purchase behavior and shopping location, stated importance of production attributes, awareness and interest in private and civic agricultural issues, in addition to some typical demographic variables such as income. [EconLit Citations: Q130, M130, Q180]. © 2009 Wiley Periodicals, Inc. [source]


Using a heterogeneous multinomial probit model with a neural net extension to model brand choice

JOURNAL OF FORECASTING, Issue 2 2007
Harald Hruschka
Abstract The multinomial probit model introduced here combines heterogeneity across households with flexibility of the (deterministic) utility function. To achieve flexibility deterministic utility is approximated by a neural net of the multilayer perceptron type. A Markov Chain Monte Carlo method serves to estimate heterogeneous multinomial probit models which fulfill economic restrictions on signs of (marginal) effects of predictors (e.g., negative for price). For empirical choice data the heterogeneous multinomial probit model extended by a multilayer perceptron clearly outperforms all the other models studied. Moreover, replacing homogeneous by heterogeneous reference price mechanisms and thus allowing price expectations to be formed differently across households also leads to better model performance. Mean utility differences and mean elasticities w.r.t. price and price deviation from reference price demonstrate that models with linear utility and nonlinear utility approximated by a multilayer perceptron lead to very different implications for managerial decision making.,,Copyright © 2007 John Wiley & Sons, Ltd. [source]


Generalized Linear Models in Family Studies

JOURNAL OF MARRIAGE AND FAMILY, Issue 4 2005
Zheng WU
Generalized linear models (GLMs), as defined by J. A. Nelder and R. W. M. Wedderburn (1972), unify a class of regression models for categorical, discrete, and continuous response variables. As an extension of classical linear models, GLMs provide a common body of theory and methodology for some seemingly unrelated models and procedures, such as the logistic, Poisson, and probit models, that are increasingly used in family studies. This article provides an overview of the principle and the key components of GLMs, such as the exponential family of distributions, the linear predictor, and the link function. To illustrate the application of GLMs, this article uses Canadian national survey data to build an example focusing on the number of close friends among older adults. The article concludes with a discussion of the strengths and weaknesses of GLMs. [source]


A new reconstruction of multivariate normal orthant probabilities

JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 1 2008
Peter Craig
Summary., A new method is introduced for geometrically reconstructing orthant probabilities for non-singular multivariate normal distributions. Orthant probabilities are expressed in terms of those for auto-regressive sequences and an efficient method is developed for numerical approximation of the latter. The approach allows more efficient accurate evaluation of the multivariate normal cumulative distribution function than previously, for many situations where the original distribution arises from a graphical model. An implementation is available as a package for the statistical software R and an application is given to multivariate probit models. [source]


Bayesian incidence analysis of animal tumorigenicity data

JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 2 2001
D. B. Dunson
Statistical inference about tumorigenesis should focus on the tumour incidence rate. Unfortunately, in most animal carcinogenicity experiments, tumours are not observable in live animals and censoring of the tumour onset times is informative. In this paper, we propose a Bayesian method for analysing data from such studies. Our approach focuses on the incidence of tumours and accommodates occult tumours and censored onset times without restricting tumour lethality, relying on cause-of-death data, or requiring interim sacrifices. We represent the underlying state of nature by a multistate stochastic process and assume general probit models for the time-specific transition rates. These models allow the incorporation of covariates, historical control data and subjective prior information. The inherent flexibility of this approach facilitates the interpretation of results, particularly when the sample size is small or the data are sparse. We use a Gibbs sampler to estimate the relevant posterior distributions. The methods proposed are applied to data from a US National Toxicology Program carcinogenicity study. [source]


Income Support and Stigma Effects for Young Australians

THE AUSTRALIAN ECONOMIC REVIEW, Issue 4 2007
Wang-Sheng Lee
The central research question addressed in this article is how receipt of income support payments affects the well-being of youths. Using 1997,2004 panel data from a nationally representative survey of Australian youths, we attempt to estimate the size of the welfare stigma faced by Australian youths, where stigma is defined as the effect of welfare receipt on reported happiness levels. In analysing the determinants of happiness, we argue that it is important to control for dynamics and initial conditions. The latter arguably measures an initial setpoint of happiness which the psychology literature has found strong support for. In contrast to the general findings of the existence of a welfare stigma for adults, based on our results using dynamic panel probit models, our findings suggest that for Australian youths there is a small negative, but not statistically significant, stigma associated with welfare receipt. [source]


Low-Paid Employment and Unemployment Dynamics in Australia,

THE ECONOMIC RECORD, Issue 272 2010
HIELKE BUDDELMEYER
This article uses longitudinal data from the Household, Income and Labour Dynamics in Australia (or HILDA) Survey to examine the extent to which the relatively high rates of transition from low-paid employment into unemployment are the result of disadvantageous personal characteristics or are instead a function of low-paid work itself. Dynamic random effects probit models of the likelihood of unemployment are estimated. After controlling for unobserved heterogeneity and initial conditions, we find that, relative to high-paid employment, low-paid employment is associated with a higher risk of unemployment, but this effect is only significant among women. We also find only weak evidence that low-paid employment is a conduit for repeat unemployment. [source]


Do Migrants Get Good Jobs?

THE ECONOMIC RECORD, Issue 2005
New Migrant Settlement in Australia
The paper uses two cohorts of the longitudinal survey of immigrants to Australia data to study how changes in social security legislation in 1997 affected the quality of jobs held by new migrants. We use bivariate probit models to estimate the probabilities of holding a ,good job' in terms of the usual human capital and demographic variables (including visa category). Our results suggest that the policy change had a positive impact on the probability to find a job, but a negative impact to hold a good job. [source]


Delegation of Authority In Business Organizations: An Empirical Test

THE JOURNAL OF INDUSTRIAL ECONOMICS, Issue 1 2004
Massimo G. Colombo
This paper tests the predictions of economic theory on the determinants of the allocation of decision-making power through the estimates of ordered probit models with random effects. Our findings show that the complexity of plants' operations and organization, the characteristics of the communication technologies in use, the ownership status of plants and the product mix of their parent companies figure prominently in explaining whether authority is delegated to the plant manager or not. In addition, the nature of the decision under consideration turns out to affect the allocation of authority. [source]


European Mathematical Genetics Meeting, Heidelberg, Germany, 12th,13th April 2007

ANNALS OF HUMAN GENETICS, Issue 4 2007
Article first published online: 28 MAY 200
Saurabh Ghosh 11 Indian Statistical Institute, Kolkata, India High correlations between two quantitative traits may be either due to common genetic factors or common environmental factors or a combination of both. In this study, we develop statistical methods to extract the contribution of a common QTL to the total correlation between the components of a bivariate phenotype. Using data on bivariate phenotypes and marker genotypes for sib-pairs, we propose a test for linkage between a common QTL and a marker locus based on the conditional cross-sib trait correlations (trait 1 of sib 1 , trait 2 of sib 2 and conversely) given the identity-by-descent sharing at the marker locus. The null hypothesis cannot be rejected unless there exists a common QTL. We use Monte-Carlo simulations to evaluate the performance of the proposed test under different trait parameters and quantitative trait distributions. An application of the method is illustrated using data on two alcohol-related phenotypes from the Collaborative Study On The Genetics Of Alcoholism project. Rémi Kazma 1 , Catherine Bonaďti-Pellié 1 , Emmanuelle Génin 12 INSERM UMR-S535 and Université Paris Sud, Villejuif, 94817, France Keywords: Gene-environment interaction, sibling recurrence risk, exposure correlation Gene-environment interactions may play important roles in complex disease susceptibility but their detection is often difficult. Here we show how gene-environment interactions can be detected by investigating the degree of familial aggregation according to the exposure of the probands. In case of gene-environment interaction, the distribution of genotypes of affected individuals, and consequently the risk in relatives, depends on their exposure. We developed a test comparing the risks in sibs according to the proband exposure. To evaluate the properties of this new test, we derived the formulas for calculating the expected risks in sibs according to the exposure of probands for various values of exposure frequency, relative risk due to exposure alone, frequencies of latent susceptibility genotypes, genetic relative risks and interaction coefficients. We find that the ratio of risks when the proband is exposed and not exposed is a good indicator of the interaction effect. We evaluate the power of the test for various sample sizes of affected individuals. We conclude that this test is valuable for diseases with moderate familial aggregation, only when the role of the exposure has been clearly evidenced. Since a correlation for exposure among sibs might lead to a difference in risks among sibs in the different proband exposure strata, we also add an exposure correlation coefficient in the model. Interestingly, we find that when this correlation is correctly accounted for, the power of the test is not decreased and might even be significantly increased. Andrea Callegaro 1 , Hans J.C. Van Houwelingen 1 , Jeanine Houwing-Duistermaat 13 Dept. of Medical Statistics and Bioinformatics, Leiden University Medical Center, The Netherlands Keywords: Survival analysis, age at onset, score test, linkage analysis Non parametric linkage (NPL) analysis compares the identical by descent (IBD) sharing in sibling pairs to the expected IBD sharing under the hypothesis of no linkage. Often information is available on the marginal cumulative hazards (for example breast cancer incidence curves). Our aim is to extend the NPL methods by taking into account the age at onset of selected sibling pairs using these known marginal hazards. Li and Zhong (2002) proposed a (retrospective) likelihood ratio test based on an additive frailty model for genetic linkage analysis. From their model we derive a score statistic for selected samples which turns out to be a weighed NPL method. The weights depend on the marginal cumulative hazards and on the frailty parameter. A second approach is based on a simple gamma shared frailty model. Here, we simply test whether the score function of the frailty parameter depends on the excess IBD. We compare the performance of these methods using simulated data. Céline Bellenguez 1 , Carole Ober 2 , Catherine Bourgain 14 INSERM U535 and University Paris Sud, Villejuif, France 5 Department of Human Genetics, The University of Chicago, USA Keywords: Linkage analysis, linkage disequilibrium, high density SNP data Compared with microsatellite markers, high density SNP maps should be more informative for linkage analyses. However, because they are much closer, SNPs present important linkage disequilibrium (LD), which biases classical nonparametric multipoint analyses. This problem is even stronger in population isolates where LD extends over larger regions with a more stochastic pattern. We investigate the issue of linkage analysis with a 500K SNP map in a large and inbred 1840-member Hutterite pedigree, phenotyped for asthma. Using an efficient pedigree breaking strategy, we first identified linked regions with a 5cM microsatellite map, on which we focused to evaluate the SNP map. The only method that models LD in the NPL analysis is limited in both the pedigree size and the number of markers (Abecasis and Wigginton, 2005) and therefore could not be used. Instead, we studied methods that identify sets of SNPs with maximum linkage information content in our pedigree and no LD-driven bias. Both algorithms that directly remove pairs of SNPs in high LD and clustering methods were evaluated. Null simulations were performed to control that Zlr calculated with the SNP sets were not falsely inflated. Preliminary results suggest that although LD is strong in such populations, linkage information content slightly better than that of microsatellite maps can be extracted from dense SNP maps, provided that a careful marker selection is conducted. In particular, we show that the specific LD pattern requires considering LD between a wide range of marker pairs rather than only in predefined blocks. Peter Van Loo 1,2,3 , Stein Aerts 1,2 , Diether Lambrechts 4,5 , Bernard Thienpont 2 , Sunit Maity 4,5 , Bert Coessens 3 , Frederik De Smet 4,5 , Leon-Charles Tranchevent 3 , Bart De Moor 2 , Koen Devriendt 3 , Peter Marynen 1,2 , Bassem Hassan 1,2 , Peter Carmeliet 4,5 , Yves Moreau 36 Department of Molecular and Developmental Genetics, VIB, Belgium 7 Department of Human Genetics, University of Leuven, Belgium 8 Bioinformatics group, Department of Electrical Engineering, University of Leuven, Belgium 9 Department of Transgene Technology and Gene Therapy, VIB, Belgium 10 Center for Transgene Technology and Gene Therapy, University of Leuven, Belgium Keywords: Bioinformatics, gene prioritization, data fusion The identification of genes involved in health and disease remains a formidable challenge. Here, we describe a novel bioinformatics method to prioritize candidate genes underlying pathways or diseases, based on their similarity to genes known to be involved in these processes. It is freely accessible as an interactive software tool, ENDEAVOUR, at http://www.esat.kuleuven.be/endeavour. Unlike previous methods, ENDEAVOUR generates distinct prioritizations from multiple heterogeneous data sources, which are then integrated, or fused, into one global ranking using order statistics. ENDEAVOUR prioritizes candidate genes in a three-step process. First, information about a disease or pathway is gathered from a set of known "training" genes by consulting multiple data sources. Next, the candidate genes are ranked based on similarity with the training properties obtained in the first step, resulting in one prioritized list for each data source. Finally, ENDEAVOUR fuses each of these rankings into a single global ranking, providing an overall prioritization of the candidate genes. Validation of ENDEAVOUR revealed it was able to efficiently prioritize 627 genes in disease data sets and 76 genes in biological pathway sets, identify candidates of 16 mono- or polygenic diseases, and discover regulatory genes of myeloid differentiation. Furthermore, the approach identified YPEL1 as a novel gene involved in craniofacial development from a 2-Mb chromosomal region, deleted in some patients with DiGeorge-like birth defects. Finally, we are currently evaluating a pipeline combining array-CGH, ENDEAVOUR and in vivo validation in zebrafish to identify novel genes involved in congenital heart defects. Mark Broom 1 , Graeme Ruxton 2 , Rebecca Kilner 311 Mathematics Dept., University of Sussex, UK 12 Division of Environmental and Evolutionary Biology, University of Glasgow, UK 13 Department of Zoology, University of Cambridge, UK Keywords: Evolutionarily stable strategy, parasitism, asymmetric game Brood parasites chicks vary in the harm that they do to their companions in the nest. In this presentation we use game-theoretic methods to model this variation. Our model considers hosts which potentially abandon single nestlings and instead choose to re-allocate their reproductive effort to future breeding, irrespective of whether the abandoned chick is the host's young or a brood parasite's. The parasite chick must decide whether or not to kill host young by balancing the benefits from reduced competition in the nest against the risk of desertion by host parents. The model predicts that three different types of evolutionarily stable strategies can exist. (1) Hosts routinely rear depleted broods, the brood parasite always kills host young and the host never then abandons the nest. (2) When adult survival after deserting single offspring is very high, hosts always abandon broods of a single nestling and the parasite never kills host offspring, effectively holding them as hostages to prevent nest desertion. (3) Intermediate strategies, in which parasites sometimes kill their nest-mates and host parents sometimes desert nests that contain only a single chick, can also be evolutionarily stable. We provide quantitative descriptions of how the values given to ecological and behavioral parameters of the host-parasite system influence the likelihood of each strategy and compare our results with real host-brood parasite associations in nature. Martin Harrison 114 Mathematics Dept, University of Sussex, UK Keywords: Brood parasitism, games, host, parasite The interaction between hosts and parasites in bird populations has been studied extensively. Game theoretical methods have been used to model this interaction previously, but this has not been studied extensively taking into account the sequential nature of this game. We consider a model allowing the host and parasite to make a number of decisions, which depend on a number of natural factors. The host lays an egg, a parasite bird will arrive at the nest with a certain probability and then chooses to destroy a number of the host eggs and lay one of it's own. With some destruction occurring, either natural or through the actions of the parasite, the host chooses to continue, eject an egg (hoping to eject the parasite) or abandon the nest. Once the eggs have hatched the game then falls to the parasite chick versus the host. The chick chooses to destroy or eject a number of eggs. The final decision is made by the host, choosing whether to raise or abandon the chicks that are in the nest. We consider various natural parameters and probabilities which influence these decisions. We then use this model to look at real-world situations of the interactions of the Reed Warbler and two different parasites, the Common Cuckoo and the Brown-Headed Cowbird. These two parasites have different methods in the way that they parasitize the nests of their hosts. The hosts in turn have a different reaction to these parasites. Arne Jochens 1 , Amke Caliebe 2 , Uwe Roesler 1 , Michael Krawczak 215 Mathematical Seminar, University of Kiel, Germany 16 Institute of Medical Informatics and Statistics, University of Kiel, Germany Keywords: Stepwise mutation model, microsatellite, recursion equation, temporal behaviour We consider the stepwise mutation model which occurs, e.g., in microsatellite loci. Let X(t,i) denote the allelic state of individual i at time t. We compute expectation, variance and covariance of X(t,i), i=1,,,N, and provide a recursion equation for P(X(t,i)=z). Because the variance of X(t,i) goes to infinity as t grows, for the description of the temporal behaviour, we regard the scaled process X(t,i)-X(t,1). The results furnish a better understanding of the behaviour of the stepwise mutation model and may in future be used to derive tests for neutrality under this model. Paul O'Reilly 1 , Ewan Birney 2 , David Balding 117 Statistical Genetics, Department of Epidemiology and Public Health, Imperial, College London, UK 18 European Bioinformatics Institute, EMBL, Cambridge, UK Keywords: Positive selection, Recombination rate, LD, Genome-wide, Natural Selection In recent years efforts to develop population genetics methods that estimate rates of recombination and levels of natural selection in the human genome have intensified. However, since the two processes have an intimately related impact on genetic variation their inference is vulnerable to confounding. Genomic regions subject to recent selection are likely to have a relatively recent common ancestor and consequently less opportunity for historical recombinations that are detectable in contemporary populations. Here we show that selection can reduce the population-based recombination rate estimate substantially. In genome-wide studies for detecting selection we observe a tendency to highlight loci that are subject to low levels of recombination. We find that the outlier approach commonly adopted in such studies may have low power unless variable recombination is accounted for. We introduce a new genome-wide method for detecting selection that exploits the sensitivity to recent selection of methods for estimating recombination rates, while accounting for variable recombination using pedigree data. Through simulations we demonstrate the high power of the Ped/Pop approach to discriminate between neutral and adaptive evolution, particularly in the context of choosing outliers from a genome-wide distribution. Although methods have been developed showing good power to detect selection ,in action', the corresponding window of opportunity is small. In contrast, the power of the Ped/Pop method is maintained for many generations after the fixation of an advantageous variant Sarah Griffiths 1 , Frank Dudbridge 120 MRC Biostatistics Unit, Cambridge, UK Keywords: Genetic association, multimarker tag, haplotype, likelihood analysis In association studies it is generally too expensive to genotype all variants in all subjects. We can exploit linkage disequilibrium between SNPs to select a subset that captures the variation in a training data set obtained either through direct resequencing or a public resource such as the HapMap. These ,tag SNPs' are then genotyped in the whole sample. Multimarker tagging is a more aggressive adaptation of pairwise tagging that allows for combinations of two or more tag SNPs to predict an untyped SNP. Here we describe a new method for directly testing the association of an untyped SNP using a multimarker tag. Previously, other investigators have suggested testing a specific tag haplotype, or performing a weighted analysis using weights derived from the training data. However these approaches do not properly account for the imperfect correlation between the tag haplotype and the untyped SNP. Here we describe a straightforward approach to testing untyped SNPs using a missing-data likelihood analysis, including the tag markers as nuisance parameters. The training data is stacked on top of the main body of genotype data so there is information on how the tag markers predict the genotype of the untyped SNP. The uncertainty in this prediction is automatically taken into account in the likelihood analysis. This approach yields more power and also a more accurate prediction of the odds ratio of the untyped SNP. Anke Schulz 1 , Christine Fischer 2 , Jenny Chang-Claude 1 , Lars Beckmann 121 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany 22 Institute of Human Genetics, University of Heidelberg, Germany Keywords: Haplotype, haplotype sharing, entropy, Mantel statistics, marker selection We previously introduced a new method to map genes involved in complex diseases, using haplotype sharing-based Mantel statistics to correlate genetic and phenotypic similarity. Although the Mantel statistic is powerful in narrowing down candidate regions, the precise localization of a gene is hampered in genomic regions where linkage disequilibrium is so high that neighboring markers are found to be significant at similar magnitude and we are not able to discriminate between them. Here, we present a new approach to localize susceptibility genes by combining haplotype sharing-based Mantel statistics with an iterative entropy-based marker selection algorithm. For each marker at which the Mantel statistic is evaluated, the algorithm selects a subset of surrounding markers. The subset is chosen to maximize multilocus linkage disequilibrium, which is measured by the normalized entropy difference introduced by Nothnagel et al. (2002). We evaluated the algorithm with respect to type I error and power. Its ability to localize the disease variant was compared to the localization (i) without marker selection and (ii) considering haplotype block structure. Case-control samples were simulated from a set of 18 haplotypes, consisting of 15 SNPs in two haplotype blocks. The new algorithm gave correct type I error and yielded similar power to detect the disease locus compared to the alternative approaches. The neighboring markers were clearly less often significant than the causal locus, and also less often significant compared to the alternative approaches. Thus the new algorithm improved the precision of the localization of susceptibility genes. Mark M. Iles 123 Section of Epidemiology and Biostatistics, LIMM, University of Leeds, UK Keywords: tSNP, tagging, association, HapMap Tagging SNPs (tSNPs) are commonly used to capture genetic diversity cost-effectively. However, it is important that the efficacy of tSNPs is correctly estimated, otherwise coverage may be insufficient. If the pilot sample from which tSNPs are chosen is too small or the initial marker map too sparse, tSNP efficacy may be overestimated. An existing estimation method based on bootstrapping goes some way to correct for insufficient sample size and overfitting, but does not completely solve the problem. We describe a novel method, based on exclusion of haplotypes, that improves on the bootstrap approach. Using simulated data, the extent of the sample size problem is investigated and the performance of the bootstrap and the novel method are compared. We incorporate an existing method adjusting for marker density by ,SNP-dropping'. We find that insufficient sample size can cause large overestimates in tSNP efficacy, even with as many as 100 individuals, and the problem worsens as the region studied increases in size. Both the bootstrap and novel method correct much of this overestimate, with our novel method consistently outperforming the bootstrap method. We conclude that a combination of insufficient sample size and overfitting may lead to overestimation of tSNP efficacy and underpowering of studies based on tSNPs. Our novel approach corrects for much of this bias and is superior to the previous method. Sample sizes larger than previously suggested may still be required for accurate estimation of tSNP efficacy. This has obvious ramifications for the selection of tSNPs from HapMap data. Claudio Verzilli 1 , Juliet Chapman 1 , Aroon Hingorani 2 , Juan Pablo-Casas 1 , Tina Shah 2 , Liam Smeeth 1 , John Whittaker 124 Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, UK 25 Division of Medicine, University College London, UK Keywords: Meta-analysis, Genetic association studies We present a Bayesian hierarchical model for the meta-analysis of candidate gene studies with a continuous outcome. Such studies often report results from association tests for different, possibly study-specific and non-overlapping markers (typically SNPs) in the same genetic region. Meta analyses of the results at each marker in isolation are seldom appropriate as they ignore the correlation that may exist between markers due to linkage disequlibrium (LD) and cannot assess the relative importance of variants at each marker. Also such marker-wise meta analyses are restricted to only those studies that have typed the marker in question, with a potential loss of power. A better strategy is one which incorporates information about the LD between markers so that any combined estimate of the effect of each variant is corrected for the effect of other variants, as in multiple regression. Here we develop a Bayesian hierarchical linear regression that models the observed genotype group means and uses pairwise LD measurements between markers as prior information to make posterior inference on adjusted effects. The approach is applied to the meta analysis of 24 studies assessing the effect of 7 variants in the C-reactive protein (CRP) gene region on plasma CRP levels, an inflammatory biomarker shown in observational studies to be positively associated with cardiovascular disease. Cathryn M. Lewis 1 , Christopher G. Mathew 1 , Theresa M. Marteau 226 Dept. of Medical and Molecular Genetics, King's College London, UK 27 Department of Psychology, King's College London, UK Keywords: Risk, genetics, CARD15, smoking, model Recently progress has been made in identifying mutations that confer susceptibility to complex diseases, with the potential to use these mutations in determining disease risk. We developed methods to estimate disease risk based on genotype relative risks (for a gene G), exposure to an environmental factor (E), and family history (with recurrence risk ,R for a relative of type R). ,R must be partitioned into the risk due to G (which is modelled independently) and the residual risk. The risk model was then applied to Crohn's disease (CD), a severe gastrointestinal disease for which smoking increases disease risk approximately 2-fold, and mutations in CARD15 confer increased risks of 2.25 (for carriers of a single mutation) and 9.3 (for carriers of two mutations). CARD15 accounts for only a small proportion of the genetic component of CD, with a gene-specific ,S, CARD15 of 1.16, from a total sibling relative risk of ,S= 27. CD risks were estimated for high-risk individuals who are siblings of a CD case, and who also smoke. The CD risk to such individuals who carry two CARD15 mutations is approximately 0.34, and for those carrying a single CARD15 mutation the risk is 0.08, compared to a population prevalence of approximately 0.001. These results imply that complex disease genes may be valuable in estimating with greater precision than has hitherto been possible disease risks in specific, easily identified subgroups of the population with a view to prevention. Yurii Aulchenko 128 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Compression, information, bzip2, genome-wide SNP data, statistical genetics With advances in molecular technology, studies accessing millions of genetic polymorphisms in thousands of study subjects will soon become common. Such studies generate large amounts of data, whose effective storage and management is a challenge to the modern statistical genetics. Standard file compression utilities, such as Zip, Gzip and Bzip2, may be helpful to minimise the storage requirements. Less obvious is the fact that the data compression techniques may be also used in the analysis of genetic data. It is known that the efficiency of a particular compression algorithm depends on the probability structure of the data. In this work, we compared different standard and customised tools using the data from human HapMap project. Secondly, we investigate the potential uses of data compression techniques for the analysis of linkage, association and linkage disequilibrium Suzanne Leal 1 , Bingshan Li 129 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA Keywords: Consanguineous pedigrees, missing genotype data Missing genotype data can increase false-positive evidence for linkage when either parametric or nonparametric analysis is carried out ignoring intermarker linkage disequilibrium (LD). Previously it was demonstrated by Huang et al (2005) that no bias occurs in this situation for affected sib-pairs with unrelated parents when either both parents are genotyped or genotype data is available for two additional unaffected siblings when parental genotypes are missing. However, this is not the case for consanguineous pedigrees, where missing genotype data for any pedigree member within a consanguinity loop can increase false-positive evidence of linkage. The false-positive evidence for linkage is further increased when cryptic consanguinity is present. The amount of false-positive evidence for linkage is highly dependent on which family members are genotyped. When parental genotype data is available, the false-positive evidence for linkage is usually not as strong as when parental genotype data is unavailable. Which family members will aid in the reduction of false-positive evidence of linkage is highly dependent on which other family members are genotyped. For a pedigree with an affected proband whose first-cousin parents have been genotyped, further reduction in the false-positive evidence of linkage can be obtained by including genotype data from additional affected siblings of the proband or genotype data from the proband's sibling-grandparents. When parental genotypes are not available, false-positive evidence for linkage can be reduced by including in the analysis genotype data from either unaffected siblings of the proband or the proband's married-in-grandparents. Najaf Amin 1 , Yurii Aulchenko 130 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Genomic Control, pedigree structure, quantitative traits The Genomic Control (GC) method was originally developed to control for population stratification and cryptic relatedness in association studies. This method assumes that the effect of population substructure on the test statistics is essentially constant across the genome, and therefore unassociated markers can be used to estimate the effect of confounding onto the test statistic. The properties of GC method were extensively investigated for different stratification scenarios, and compared to alternative methods, such as the transmission-disequilibrium test. The potential of this method to correct not for occasional cryptic relations, but for regular pedigree structure, however, was not investigated before. In this work we investigate the potential of the GC method for pedigree-based association analysis of quantitative traits. The power and type one error of the method was compared to standard methods, such as the measured genotype (MG) approach and quantitative trait transmission-disequilibrium test. In human pedigrees, with trait heritability varying from 30 to 80%, the power of MG and GC approach was always higher than that of TDT. GC had correct type 1 error and its power was close to that of MG under moderate heritability (30%), but decreased with higher heritability. William Astle 1 , Chris Holmes 2 , David Balding 131 Department of Epidemiology and Public Health, Imperial College London, UK 32 Department of Statistics, University of Oxford, UK Keywords: Population structure, association studies, genetic epidemiology, statistical genetics In the analysis of population association studies, Genomic Control (Devlin & Roeder, 1999) (GC) adjusts the Armitage test statistic to correct the type I error for the effects of population substructure, but its power is often sub-optimal. Turbo Genomic Control (TGC) generalises GC to incorporate co-variation of relatedness and phenotype, retaining control over type I error while improving power. TGC is similar to the method of Yu et al. (2006), but we extend it to binary (case-control) in addition to quantitative phenotypes, we implement improved estimation of relatedness coefficients, and we derive an explicit statistic that generalizes the Armitage test statistic and is fast to compute. TGC also has similarities to EIGENSTRAT (Price et al., 2006) which is a new method based on principle components analysis. The problems of population structure(Clayton et al., 2005) and cryptic relatedness (Voight & Pritchard, 2005) are essentially the same: if patterns of shared ancestry differ between cases and controls, whether distant (coancestry) or recent (cryptic relatedness), false positives can arise and power can be diminished. With large numbers of widely-spaced genetic markers, coancestry can now be measured accurately for each pair of individuals via patterns of allele-sharing. Instead of modelling subpopulations, we work instead with a coancestry coefficient for each pair of individuals in the study. We explain the relationships between TGC, GC and EIGENSTRAT. We present simulation studies and real data analyses to illustrate the power advantage of TGC in a range of scenarios incorporating both substructure and cryptic relatedness. References Clayton, D. G.et al. (2005) Population structure, differential bias and genomic control in a large-scale case-control association study. Nature Genetics37(11) November 2005. Devlin, B. & Roeder, K. (1999) Genomic control for association studies. Biometics55(4) December 1999. Price, A. L.et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics38(8) (August 2006). Voight, B. J. & Pritchard, J. K. (2005) Confounding from cryptic relatedness in case-control association studies. Public Library of Science Genetics1(3) September 2005. Yu, J.et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics38(2) February 2006. Hervé Perdry 1 , Marie-Claude Babron 1 , Françoise Clerget-Darpoux 133 INSERM U535 and Univ. Paris Sud, UMR-S 535, Villejuif, France Keywords: Modifier genes, case-parents trios, ordered transmission disequilibrium test A modifying locus is a polymorphic locus, distinct from the disease locus, which leads to differences in the disease phenotype, either by modifying the penetrance of the disease allele, or by modifying the expression of the disease. The effect of such a locus is a clinical heterogeneity that can be reflected by the values of an appropriate covariate, such as the age of onset, or the severity of the disease. We designed the Ordered Transmission Disequilibrium Test (OTDT) to test for a relation between the clinical heterogeneity, expressed by the covariate, and marker genotypes of a candidate gene. The method applies to trio families with one affected child and his parents. Each family member is genotyped at a bi-allelic marker M of a candidate gene. To each of the families is associated a covariate value; the families are ordered on the values of this covariate. As the TDT (Spielman et al. 1993), the OTDT is based on the observation of the transmission rate T of a given allele at M. The OTDT aims to find a critical value of the covariate which separates the sample of families in two subsamples in which the transmission rates are significantly different. We investigate the power of the method by simulations under various genetic models and covariate distributions. Acknowledgments H Perdry is funded by ARSEP. Pascal Croiseau 1 , Heather Cordell 2 , Emmanuelle Génin 134 INSERM U535 and University Paris Sud, UMR-S535, Villejuif, France 35 Institute of Human Genetics, Newcastle University, UK Keywords: Association, missing data, conditionnal logistic regression Missing data is an important problem in association studies. Several methods used to test for association need that individuals be genotyped at the full set of markers. Individuals with missing data need to be excluded from the analysis. This could involve an important decrease in sample size and a loss of information. If the disease susceptibility locus (DSL) is poorly typed, it is also possible that a marker in linkage disequilibrium gives a stronger association signal than the DSL. One may then falsely conclude that the marker is more likely to be the DSL. We recently developed a Multiple Imputation method to infer missing data on case-parent trios Starting from the observed data, a few number of complete data sets are generated by Markov-Chain Monte Carlo approach. These complete datasets are analysed using standard statistical package and the results are combined as described in Little & Rubin (2002). Here we report the results of simulations performed to examine, for different patterns of missing data, how often the true DSL gives the highest association score among different loci in LD. We found that multiple imputation usually correctly detect the DSL site even if the percentage of missing data is high. This is not the case for the naďve approach that consists in discarding trios with missing data. In conclusion, Multiple imputation presents the advantage of being easy to use and flexible and is therefore a promising tool in the search for DSL involved in complex diseases. Salma Kotti 1 , Heike Bickeböller 2 , Françoise Clerget-Darpoux 136 University Paris Sud, UMR-S535, Villejuif, France 37 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany Keywords: Genotype relative risk, internal controls, Family based analyses Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRRs. We will analytically derive the GRR estimators for the 1:1 and 1:3 matching and will present the results at the meeting. Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRR. We will analytically derive the GRR estimator for the 1:1 and 1:3 matching and will present the results at the meeting. Luigi Palla 1 , David Siegmund 239 Department of Mathematics,Free University Amsterdam, The Netherlands 40 Department of Statistics, Stanford University, California, USA Keywords: TDT, assortative mating, inbreeding, statistical power A substantial amount of Assortative Mating (AM) is often recorded on physical and psychological, dichotomous as well as quantitative traits that are supposed to have a multifactorial genetic component. In particular AM has the effect of increasing the genetic variance, even more than inbreeding because it acts across loci beside within loci, when the trait has a multifactorial origin. Under the assumption of a polygenic model for AM dating back to Wright (1921) and refined by Crow and Felsenstein (1968,1982), the effect of assortative mating on the power to detect genetic association in the Transmission Disequilibrium Test (TDT) is explored as parameters, such as the effective number of genes and the allelic frequency vary. The power is reflected by the non centrality parameter of the TDT and is expressed as a function of the number of trios, the relative risk of the heterozygous genotype and the allele frequency (Siegmund and Yakir, 2007). The noncentrality parameter of the relevant score statistic is updated considering the effect of AM which is expressed in terms of an ,effective' inbreeding coefficient. In particular, for dichotomous traits it is apparent that the higher the number of genes involved in the trait, the lower the loss in power due to AM. Finally an attempt is made to extend this relation to the Q-TDT (Rabinowitz, 1997), which involves considering the effect of AM also on the phenotypic variance of the trait of interest, under the assumption that AM affects only its additive genetic component. References Crow, & Felsenstein, (1968). The effect of assortative mating on the genetic composition of a population. Eugen.Quart.15, 87,97. Rabinowitz,, 1997. A Transmission Disequilibrium Test for Quantitative Trait Loci. Human Heredity47, 342,350. Siegmund, & Yakir, (2007) Statistics of gene mapping, Springer. Wright, (1921). System of mating.III. Assortative mating based on somatic resemblance. Genetics6, 144,161. Jérémie Nsengimana 1 , Ben D Brown 2 , Alistair S Hall 2 , Jenny H Barrett 141 Leeds Institute of Molecular Medicine, University of Leeds, UK 42 Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, UK Keywords: Inflammatory genes, haplotype, coronary artery disease Genetic Risk of Acute Coronary Events (GRACE) is an initiative to collect cases of coronary artery disease (CAD) and their unaffected siblings in the UK and to use them to map genetic variants increasing disease risk. The aim of the present study was to test the association between CAD and 51 single nucleotide polymorphisms (SNPs) and their haplotypes from 35 inflammatory genes. Genotype data were available for 1154 persons affected before age 66 (including 48% before age 50) and their 1545 unaffected siblings (891 discordant families). Each SNP was tested for association to CAD, and haplotypes within genes or gene clusters were tested using FBAT (Rabinowitz & Laird, 2000). For the most significant results, genetic effect size was estimated using conditional logistic regression (CLR) within STATA adjusting for other risk factors. Haplotypes were assigned using HAPLORE (Zhang et al., 2005), which considers all parental mating types consistent with offspring genotypes and assigns them a probability of occurence. This probability was used in CLR to weight the haplotypes. In the single SNP analysis, several SNPs showed some evidence for association, including one SNP in the interleukin-1A gene. Analysing haplotypes in the interleukin-1 gene cluster, a common 3-SNP haplotype was found to increase the risk of CAD (P = 0.009). In an additive genetic model adjusting for covariates the odds ratio (OR) for this haplotype is 1.56 (95% CI: 1.16-2.10, p = 0.004) for early-onset CAD (before age 50). This study illustrates the utility of haplotype analysis in family-based association studies to investigate candidate genes. References Rabinowitz, D. & Laird, N. M. (2000) Hum Hered50, 211,223. Zhang, K., Sun, F. & Zhao, H. (2005) Bioinformatics21, 90,103. Andrea Foulkes 1 , Recai Yucel 1 , Xiaohong Li 143 Division of Biostatistics, University of Massachusetts, USA Keywords: Haploytpe, high-dimensional, mixed modeling The explosion of molecular level information coupled with large epidemiological studies presents an exciting opportunity to uncover the genetic underpinnings of complex diseases; however, several analytical challenges remain to be addressed. Characterizing the components to complex diseases inevitably requires consideration of synergies across multiple genetic loci and environmental and demographic factors. In addition, it is critical to capture information on allelic phase, that is whether alleles within a gene are in cis (on the same chromosome) or in trans (on different chromosomes.) In associations studies of unrelated individuals, this alignment of alleles within a chromosomal copy is generally not observed. We address the potential ambiguity in allelic phase in this high dimensional data setting using mixed effects models. Both a semi-parametric and fully likelihood-based approach to estimation are considered to account for missingness in cluster identifiers. In the first case, we apply a multiple imputation procedure coupled with a first stage expectation maximization algorithm for parameter estimation. A bootstrap approach is employed to assess sensitivity to variability induced by parameter estimation. Secondly, a fully likelihood-based approach using an expectation conditional maximization algorithm is described. Notably, these models allow for characterizing high-order gene-gene interactions while providing a flexible statistical framework to account for the confounding or mediating role of person specific covariates. The proposed method is applied to data arising from a cohort of human immunodeficiency virus type-1 (HIV-1) infected individuals at risk for therapy associated dyslipidemia. Simulation studies demonstrate reasonable power and control of family-wise type 1 error rates. Vivien Marquard 1 , Lars Beckmann 1 , Jenny Chang-Claude 144 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Genotyping errors, type I error, haplotype-based association methods It has been shown in several simulation studies that genotyping errors may have a great impact on the type I error of statistical methods used in genetic association analysis of complex diseases. Our aim was to investigate type I error rates in a case-control study, when differential and non-differential genotyping errors were introduced in realistic scenarios. We simulated case-control data sets, where individual genotypes were drawn from a haplotype distribution of 18 haplotypes with 15 markers in the APM1 gene. Genotyping errors were introduced following the unrestricted and symmetric with 0 edges error models described by Heid et al. (2006). In six scenarios, errors resulted from changes of one allele to another with predefined probabilities of 1%, 2.5% or 10%, respectively. A multiple number of errors per haplotype was possible and could vary between 0 and 15, the number of markers investigated. We examined three association methods: Mantel statistics using haplotype-sharing; a haplotype-specific score test; and Armitage trend test for single markers. The type I error rates were not influenced for any of all the three methods for a genotyping error rate of less than 1%. For higher error rates and differential errors, the type I error of the Mantel statistic was only slightly and of the Armitage trend test moderately increased. The type I error rates of the score test were highly increased. The type I error rates were correct for all three methods for non-differential errors. Further investigations will be carried out with different frequencies of differential error rates and focus on power. Arne Neumann 1 , Dörthe Malzahn 1 , Martina Müller 2 , Heike Bickeböller 145 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany 46 GSF-National Research Center for Environment and Health, Neuherberg & IBE-Institute of Epidemiology, Ludwig-Maximilians University München, Germany Keywords: Interaction, longitudinal, nonparametric Longitudinal data show the time dependent course of phenotypic traits. In this contribution, we consider longitudinal cohort studies and investigate the association between two candidate genes and a dependent quantitative longitudinal phenotype. The set-up defines a factorial design which allows us to test simultaneously for the overall gene effect of the loci as well as for possible gene-gene and gene time interaction. The latter would induce genetically based time-profile differences in the longitudinal phenotype. We adopt a non-parametric statistical test to genetic epidemiological cohort studies and investigate its performance by simulation studies. The statistical test was originally developed for longitudinal clinical studies (Brunner, Munzel, Puri, 1999 J Multivariate Anal 70:286-317). It is non-parametric in the sense that no assumptions are made about the underlying distribution of the quantitative phenotype. Longitudinal observations belonging to the same individual can be arbitrarily dependent on one another for the different time points whereas trait observations of different individuals are independent. The two loci are assumed to be statistically independent. Our simulations show that the nonparametric test is comparable with ANOVA in terms of power of detecting gene-gene and gene-time interaction in an ANOVA favourable setting. Rebecca Hein 1 , Lars Beckmann 1 , Jenny Chang-Claude 147 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Indirect association studies, interaction effects, linkage disequilibrium, marker allele frequency Association studies accounting for gene-environment interactions (GxE) may be useful for detecting genetic effects and identifying important environmental effect modifiers. Current technology facilitates very dense marker spacing in genetic association studies; however, the true disease variant(s) may not be genotyped. In this situation, an association between a gene and a phenotype may still be detectable, using genetic markers associated with the true disease variant(s) (indirect association). Zondervan and Cardon [2004] showed that the odds ratios (OR) of markers which are associated with the disease variant depend highly on the linkage disequilibrium (LD) between the variant and the markers, and whether the allele frequencies match and thereby influence the sample size needed to detect genetic association. We examined the influence of LD and allele frequencies on the sample size needed to detect GxE in indirect association studies, and provide tables for sample size estimation. For discordant allele frequencies and incomplete LD, sample sizes can be unfeasibly large. The influence of both factors is stronger for disease loci with small rather than moderate to high disease allele frequencies. A decline in D' of e.g. 5% has less impact on sample size than increasing the difference in allele frequencies by the same percentage. Assuming 80% power, large interaction effects can be detected using smaller sample sizes than those needed for the detection of main effects. The detection of interaction effects involving rare alleles may not be possible. Focussing only on marker density can be a limited strategy in indirect association studies for GxE. Cyril Dalmasso 1 , Emmanuelle Génin 2 , Catherine Bourgain 2 , Philippe Broët 148 JE 2492 , Univ. Paris-Sud, France 49 INSERM UMR-S 535 and University Paris Sud, Villejuif, France Keywords: Linkage analysis, Multiple testing, False Discovery Rate, Mixture model In the context of genome-wide linkage analyses, where a large number of statistical tests are simultaneously performed, the False Discovery Rate (FDR) that is defined as the expected proportion of false discoveries among all discoveries is nowadays widely used for taking into account the multiple testing problem. Other related criteria have been considered such as the local False Discovery Rate (lFDR) that is a variant of the FDR giving to each test its own measure of significance. The lFDR is defined as the posterior probability that a null hypothesis is true. Most of the proposed methods for estimating the lFDR or the FDR rely on distributional assumption under the null hypothesis. However, in observational studies, the empirical null distribution may be very different from the theoretical one. In this work, we propose a mixture model based approach that provides estimates of the lFDR and the FDR in the context of large-scale variance component linkage analyses. In particular, this approach allows estimating the empirical null distribution, this latter being a key quantity for any simultaneous inference procedure. The proposed method is applied on a real dataset. Arief Gusnanto 1 , Frank Dudbridge 150 MRC Biostatistics Unit, Cambridge UK Keywords: Significance, genome-wide, association, permutation, multiplicity Genome-wide association scans have introduced statistical challenges, mainly in the multiplicity of thousands of tests. The question of what constitutes a significant finding remains somewhat unresolved. Permutation testing is very time-consuming, whereas Bayesian arguments struggle to distinguish direct from indirect association. It seems attractive to summarise the multiplicity in a simple form that allows users to avoid time-consuming permutations. A standard significance level would facilitate reporting of results and reduce the need for permutation tests. This is potentially important because current scans do not have full coverage of the whole genome, and yet, the implicit multiplicity is genome-wide. We discuss some proposed summaries, with reference to the empirical null distribution of the multiple tests, approximated through a large number of random permutations. Using genome-wide data from the Wellcome Trust Case-Control Consortium, we use a sub-sampling approach with increasing density to estimate the nominal p-value to obtain family-wise significance of 5%. The results indicate that the significance level is converging to about 1e-7 as the marker spacing becomes infinitely dense. We considered the concept of an effective number of independent tests, and showed that when used in a Bonferroni correction, the number varies with the overall significance level, but is roughly constant in the region of interest. We compared several estimators of the effective number of tests, and showed that in the region of significance of interest, Patterson's eigenvalue based estimator gives approximately the right family-wise error rate. Michael Nothnagel 1 , Amke Caliebe 1 , Michael Krawczak 151 Institute of Medical Informatics and Statistics, University Clinic Schleswig-Holstein, University of Kiel, Germany Keywords: Association scans, Bayesian framework, posterior odds, genetic risk, multiplicative model Whole-genome association scans have been suggested to be a cost-efficient way to survey genetic variation and to map genetic disease factors. We used a Bayesian framework to investigate the posterior odds of a genuine association under multiplicative disease models. We demonstrate that the p value alone is not a sufficient means to evaluate the findings in association studies. We suggest that likelihood ratios should accompany p values in association reports. We argue, that, given the reported results of whole-genome scans, more associations should have been successfully replicated if the consistently made assumptions about considerable genetic risks were correct. We conclude that it is very likely that the vast majority of relative genetic risks are only of the order of 1.2 or lower. Clive Hoggart 1 , Maria De Iorio 1 , John Whittakker 2 , David Balding 152 Department of Epidemiology and Public Health, Imperial College London, UK 53 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: Genome-wide association analyses, shrinkage priors, Lasso Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants of small effect, which is a plausible scenario for many complex diseases. Moreover, many simulation studies assume a single causal variant and so more complex realities are ignored. Analysing large numbers of variants simultaneously is now becoming feasible, thanks to developments in Bayesian stochastic search methods. We pose the problem of SNP selection as variable selection in a regression model. In contrast to single SNP tests this approach simultaneously models the effect of all SNPs. SNPs are selected by a Bayesian interpretation of the lasso (Tibshirani, 1996); the maximum a posterior (MAP) estimate of the regression coefficients, which have been given independent, double exponential prior distributions. The double exponential distribution is an example of a shrinkage prior, MAP estimates with shrinkage priors can be zero, thus all SNPs with non zero regression coefficients are selected. In addition to the commonly-used double exponential (Laplace) prior, we also implement the normal exponential gamma prior distribution. We show that use of the Laplace prior improves SNP selection in comparison with single -SNP tests, and that the normal exponential gamma prior leads to a further improvement. Our method is fast and can handle very large numbers of SNPs: we demonstrate its performance using both simulated and real genome-wide data sets with 500 K SNPs, which can be analysed in 2 hours on a desktop workstation. Mickael Guedj 1,2 , Jerome Wojcik 2 , Gregory Nuel 154 Laboratoire Statistique et Génome, Université d'Evry, Evry France 55 Serono Pharmaceutical Research Institute, Plan-les-Ouates, Switzerland Keywords: Local Replication, Local Score, Association In gene-mapping, replication of initial findings has been put forwards as the approach of choice for filtering false-positives from true signals for underlying loci. In practice, such replications are however too poorly observed. Besides the statistical and technical-related factors (lack of power, multiple-testing, stratification, quality control,) inconsistent conclusions obtained from independent populations might result from real biological differences. In particular, the high degree of variation in the strength of LD among populations of different origins is a major challenge to the discovery of genes. Seeking for Local Replications (defined as the presence of a signal of association in a same genomic region among populations) instead of strict replications (same locus, same risk allele) may lead to more reliable results. Recently, a multi-markers approach based on the Local Score statistic has been proposed as a simple and efficient way to select candidate genomic regions at the first stage of genome-wide association studies. Here we propose an extension of this approach adapted to replicated association studies. Based on simulations, this method appears promising. In particular it outperforms classical simple-marker strategies to detect modest-effect genes. Additionally it constitutes, to our knowledge, a first framework dedicated to the detection of such Local Replications. Juliet Chapman 1 , Claudio Verzilli 1 , John Whittaker 156 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: FDR, Association studies, Bayesian model selection As genomewide association studies become commonplace there is debate as to how such studies might be analysed and what we might hope to gain from the data. It is clear that standard single locus approaches are limited in that they do not adjust for the effects of other loci and problematic since it is not obvious how to adjust for multiple comparisons. False discovery rates have been suggested, but it is unclear how well these will cope with highly correlated genetic data. We consider the validity of standard false discovery rates in large scale association studies. We also show that a Bayesian procedure has advantages in detecting causal loci amongst a large number of dependant SNPs and investigate properties of a Bayesian FDR. Peter Kraft 157 Harvard School of Public Health, Boston USA Keywords: Gene-environment interaction, genome-wide association scans Appropriately analyzed two-stage designs,where a subset of available subjects are genotyped on a genome-wide panel of markers at the first stage and then a much smaller subset of the most promising markers are genotyped on the remaining subjects,can have nearly as much power as a single-stage study where all subjects are genotyped on the genome-wide panel yet can be much less expensive. Typically, the "most promising" markers are selected based on evidence for a marginal association between genotypes and disease. Subsequently, the few markers found to be associated with disease at the end of the second stage are interrogated for evidence of gene-environment interaction, mainly to understand their impact on disease etiology and public health impact. However, this approach may miss variants which have a sizeable effect restricted to one exposure stratum and therefore only a modest marginal effect. We have proposed to use information on the joint effects of genes and a discrete list of environmental exposures at the initial screening stage to select promising markers for the second stage [Kraft et al Hum Hered 2007]. This approach optimizes power to detect variants that have a sizeable marginal effect and variants that have a small marginal effect but a sizeable effect in a stratum defined by an environmental exposure. As an example, I discuss a proposed genome-wide association scan for Type II diabetes susceptibility variants based in several large nested case-control studies. Beate Glaser 1 , Peter Holmans 158 Biostatistics and Bioinformatics Unit, Cardiff University, School of Medicine, Heath Park, Cardiff, UK Keywords: Combined case-control and trios analysis, Power, False-positive rate, Simulation, Association studies The statistical power of genetic association studies can be enhanced by combining the analysis of case-control with parent-offspring trio samples. Various combined analysis techniques have been recently developed; as yet, there have been no comparisons of their power. This work was performed with the aim of identifying the most powerful method among available combined techniques including test statistics developed by Kazeem and Farrall (2005), Nagelkerke and colleagues (2004) and Dudbridge (2006), as well as a simple combination of ,2-statistics from single samples. Simulation studies were performed to investigate their power under different additive, multiplicative, dominant and recessive disease models. False-positive rates were determined by studying the type I error rates under null models including models with unequal allele frequencies between the single case-control and trios samples. We identified three techniques with equivalent power and false-positive rates, which included modifications of the three main approaches: 1) the unmodified combined Odds ratio estimate by Kazeem & Farrall (2005), 2) a modified approach of the combined risk ratio estimate by Nagelkerke & colleagues (2004) and 3) a modified technique for a combined risk ratio estimate by Dudbridge (2006). Our work highlights the importance of studies investigating test performance criteria of novel methods, as they will help users to select the optimal approach within a range of available analysis techniques. David Almorza 1 , M.V. Kandus 2 , Juan Carlos Salerno 2 , Rafael Boggio 359 Facultad de Ciencias del Trabajo, University of Cádiz, Spain 60 Instituto de Genética IGEAF, Buenos Aires, Argentina 61 Universidad Nacional de La Plata, Buenos Aires, Argentina Keywords: Principal component analysis, maize, ear weight, inbred lines The objective of this work was to evaluate the relationship among different traits of the ear of maize inbred lines and to group genotypes according to its performance. Ten inbred lines developed at IGEAF (INTA Castelar) and five public inbred lines as checks were used. A field trial was carried out in Castelar, Buenos Aires (34° 36' S , 58° 39' W) using a complete randomize design with three replications. At harvest, individual weight (P.E.), diameter (D.E.), row number (N.H.) and length (L.E.) of the ear were assessed. A principal component analysis, PCA, (Infostat 2005) was used, and the variability of the data was depicted with a biplot. Principal components 1 and 2 (CP1 and CP2) explained 90% of the data variability. CP1 was correlated with P.E., L.E. and D.E., meanwhile CP2 was correlated with N.H. We found that individual weight (P.E.) was more correlated with diameter of the ear (D.E.) than with length (L.E). Five groups of inbred lines were distinguished: with high P.E. and mean N.H. (04-70, 04-73, 04-101 and MO17), with high P.E. but less N.H. (04-61 and B14), with mean P.E. and N.H. (B73, 04-123 and 04-96), with high N.H. but less P.E. (LP109, 04-8, 04-91 and 04-76) and with low P.E. and low N.H. (LP521 and 04-104). The use of PCA showed which variables had more incidence in ear weight and how is the correlation among them. Moreover, the different groups found with this analysis allow the evaluation of inbred lines by several traits simultaneously. Sven Knüppel 1 , Anja Bauerfeind 1 , Klaus Rohde 162 Department of Bioinformatics, MDC Berlin, Germany Keywords: Haplotypes, association studies, case-control, nuclear families The area of gene chip technology provides a plethora of phase-unknown SNP genotypes in order to find significant association to some genetic trait. To circumvent possibly low information content of a single SNP one groups successive SNPs and estimates haplotypes. Haplotype estimation, however, may reveal ambiguous haplotype pairs and bias the application of statistical methods. Zaykin et al. (Hum Hered, 53:79-91, 2002) proposed the construction of a design matrix to take this ambiguity into account. Here we present a set of functions written for the Statistical package R, which carries out haplotype estimation on the basis of the EM-algorithm for individuals (case-control) or nuclear families. The construction of a design matrix on basis of estimated haplotypes or haplotype pairs allows application of standard methods for association studies (linear, logistic regression), as well as statistical methods as haplotype sharing statistics and TDT-Test. Applications of these methods to genome-wide association screens will be demonstrated. Manuela Zucknick 1 , Chris Holmes 2 , Sylvia Richardson 163 Department of Epidemiology and Public Health, Imperial College London, UK 64 Department of Statistics, Oxford Center for Gene Function, University of Oxford, UK Keywords: Bayesian, variable selection, MCMC, large p, small n, structured dependence In large-scale genomic applications vast numbers of markers or genes are scanned to find a few candidates which are linked to a particular phenotype. Statistically, this is a variable selection problem in the "large p, small n" situation where many more variables than samples are available. An additional feature is the complex dependence structure which is often observed among the markers/genes due to linkage disequilibrium or their joint involvement in biological processes. Bayesian variable selection methods using indicator variables are well suited to the problem. Binary phenotypes like disease status are common and both Bayesian probit and logistic regression can be applied in this context. We argue that logistic regression models are both easier to tune and to interpret than probit models and implement the approach by Holmes & Held (2006). Because the model space is vast, MCMC methods are used as stochastic search algorithms with the aim to quickly find regions of high posterior probability. In a trade-off between fast-updating but slow-moving single-gene Metropolis-Hastings samplers and computationally expensive full Gibbs sampling, we propose to employ the dependence structure among the genes/markers to help decide which variables to update together. Also, parallel tempering methods are used to aid bold moves and help avoid getting trapped in local optima. Mixing and convergence of the resulting Markov chains are evaluated and compared to standard samplers in both a simulation study and in an application to a gene expression data set. Reference Holmes, C. C. & Held, L. (2006) Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis1, 145,168. Dawn Teare 165 MMGE, University of Sheffield, UK Keywords: CNP, family-based analysis, MCMC Evidence is accumulating that segmental copy number polymorphisms (CNPs) may represent a significant portion of human genetic variation. These highly polymorphic systems require handling as phenotypes rather than co-dominant markers, placing new demands on family-based analyses. We present an integrated approach to meet these challenges in the form of a graphical model, where the underlying discrete CNP phenotype is inferred from the (single or replicate) quantitative measure within the analysis, whilst assuming an allele based system segregating through the pedigree. [source]


Determination of Sample Sizes for Demonstrating Efficacy of Radiation Countermeasures

BIOMETRICS, Issue 1 2010
Ralph L. Kodell
Summary In response to the ever increasing threat of radiological and nuclear terrorism, active development of nontoxic new drugs and other countermeasures to protect against and/or mitigate adverse health effects of radiation is ongoing. Although the classical LD50 study used for many decades as a first step in preclinical toxicity testing of new drugs has been largely replaced by experiments that use fewer animals, the need to evaluate the radioprotective efficacy of new drugs necessitates the conduct of traditional LD50 comparative studies (FDA, 2002,,Federal Register,67, 37988,37998). There is, however, no readily available method to determine the number of animals needed for establishing efficacy in these comparative potency studies. This article presents a sample-size formula based on Student's,t,for comparative potency testing. It is motivated by the U.S. Food and Drug Administration's (FDA's) requirements for robust efficacy data in the testing of response modifiers in total body irradiation experiments where human studies are not ethical or feasible. Monte Carlo simulation demonstrated the formula's performance for Student's,t, Wald, and likelihood ratio tests in both logistic and probit models. Importantly, the results showed clear potential for justifying the use of substantially fewer animals than are customarily used in these studies. The present article may thus initiate a dialogue among researchers who use animals for radioprotection survival studies, institutional animal care and use committees, and drug regulatory bodies to reach a consensus on the number of animals needed to achieve statistically robust results for demonstrating efficacy of radioprotective drugs. [source]


Combining Information from Cancer Registry and Medical Records Data to Improve Analyses of Adjuvant Cancer Therapies

BIOMETRICS, Issue 3 2009
Yulei He
Summary Cancer registry records contain valuable data on provision of adjuvant therapies for cancer patients. Previous studies, however, have shown that these therapies are underreported in registry systems. Hence direct use of the registry data may lead to invalid analysis results. We propose first to impute correct treatment status, borrowing information from an additional source such as medical records data collected in a validation sample, and then to analyze the multiply imputed data, as in Yucel and Zaslavsky (2005,,Journal of the American Statistical Association,100, 1123,1132). We extend their models to multiple therapies using multivariate probit models with random effects. Our model takes into account the associations among different therapies in both administration and probability of reporting, as well as the multilevel structure (patients clustered within hospitals) of registry data. We use Gibbs sampling to estimate model parameters and impute treatment status. The proposed methodology is applied to the data from the Quality of Cancer Care project, in which stage II or III colorectal cancer patients were eligible to receive adjuvant chemotherapy and radiation therapy. [source]


Bayesian Variable Selection in Multinomial Probit Models to Identify Molecular Signatures of Disease Stage

BIOMETRICS, Issue 3 2004
Naijun Sha
Summary Here we focus on discrimination problems where the number of predictors substantially exceeds the sample size and we propose a Bayesian variable selection approach to multinomial probit models. Our method makes use of mixture priors and Markov chain Monte Carlo techniques to select sets of variables that differ among the classes. We apply our methodology to a problem in functional genomics using gene expression profiling data. The aim of the analysis is to identify molecular signatures that characterize two different stages of rheumatoid arthritis. [source]


The effect of environmental innovations on employment changes: an econometric analysis

BUSINESS STRATEGY AND THE ENVIRONMENT, Issue 6 2004
Klaus Rennings
This paper examines the determinants of employment changes due to an environmental innovation of an establishment. The data stem from telephone surveys in five European countries. 1594 interviews have been realized with environmentally innovative establishments representing the European industry and service sector. Based on results of discrete choice models, we show that if the most important environmental innovation is a product or service innovation it has a significantly positive effect on the probability of an increase in employment compared with the probability of no noticeable change. In contrast, if the most important environmental innovation is an end-of-pipe innovation it has a significantly positive influence on employment decrease. Methodologically, we consider the multinomial logit model and several multinomial probit models. We find that the estimates of the parameters of the explanatory variables are very similar in the different approaches. Copyright © 2004 John Wiley & Sons, Ltd and ERP Environment. [source]