Home About us Contact | |||
Principal Metabolites (principal + metabolite)
Selected AbstractsStereospecific reduction of the original anticancer drug oracin in rat extrahepatic tissuesJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2003Barbora Szotáková ABSTRACT The liver is the major site of drug metabolism in the body. However, many drugs undergo metabolism in extrahepatic sites and in the gut wall and lumen. In this study, the distribution and activity of reductases in rat that reduced potential cytostatic oracin to its principal metabolite 11-dihydrooracin (DHO) were investigated. The extension and stereospecificity of oracin reduction to DHO were tested in microsomal and cytosolic fractions from the liver, kidney, heart, lung and wall of small intestine, caecum and large intestine. Intestinal bacterial reduction of oracin was studied as well. The amount of DHO enantiomers was measured by HPLC with Chiralcel OD-R as chiral column. Reductive biotransformation of oracin was mostly stereospecific for (+)-DHO, but the enantiomeric ratio differed significantly among individual tissues and subcellular fractions (from 56% (+)-DHO in heart microsomes to 92% (+)-DHO in liver cytosol). Stereospecificity for (-)-DHO (60%) was observed in bacterial oracin reduction in the lumen of small intestine, caecum and large intestine. Shift of the (+)-DHO/(-)-DHO enantiomeric ratio from 90:10 (in liver subcellular fractions) to 60:40 (in-vivo) clearly demonstrated the importance of the contribution of extrahepatic metabolism to the total biotransformation of oracin to DHO. [source] Reduction of the Potential Anticancer Drug Oracin in the Rat Liver In-vitroJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 5 2000BARBORA SZOTÁKOVÁ Studies on the metabolism of the potential cytostatic drug oracin have shown that a principal metabolite of oracin is 11-dihydrooracin (DHO). We conducted in-vitro experiments to investigate the extent of oracin carbonyl reduction in microsomal or cytosolic fractions and to find out the enzymes involved under these conditions. Among several inducers of rat cytochrome P450 only 3-methylcholanthrene caused a significant (P < 0.01) stimulation (1.9 times) of DHO production in microsomal fraction and the specific P4501A inhibitor ,-naphthoflavone significantly (P < 0.01) decreased (twice) the induced reduction activity. Cytochrome P4501A participates in oracin reduction in microsomes. 18,-Glycyrrhetinic acid, a specific inhibitor of hydroxysteroid dehydrogenase, significantly (P < 0.01) inhibited the production of DHO in the microsomal fraction (>95% inhibition) in comparison with the non-inhibited reaction. Statistically significant (P < 0.01) inhibition (95%) of DHO formation was caused by metyrapone, which is also the substrate of 11,-hydroxysteroid dehydrogenase. The main microsomal enzyme which catalyses the carbonyl reduction of oracin is probably 11,-hydroxysteroid dehydrogenase. Important oracin reduction to DHO in the cytosolic fraction was found. According to its specific sensitivity towards quercitrin (inhibition by 99%, P < 0.01), the enzyme responsible for DHO formation in the rat liver cytosol is postulated to be carbonyl reductase. [source] The binding and distribution of albendazole and its principal metabolites in Giardia duodenalisJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 3 2000M. E. Oxberry Trophozoites of the protozoan parasite Giardia duodenalis were exposed to various albendazole concentrations for 4 h, washed, fixed and incubated with antibodies raised against albendazole and its two major metabolites albendazole sulphoxide and albendazole sulphone. Tubulin antibodies were also used. A peroxidase- or FITC-conjugated secondary antibody was used to detect the primary antibody with transmission electron microscopy or confocal laser scanning microscopy, respectively. Albendazole, a benzimidazole compound, was detected in the mid-dorsal region of trophozoites, albendazole sulphoxide in the posterior-dorsal region and albendazole sulphone in clusters above the median bodies. Tubulin was recognised in the ventral disk. This is the first indication that G. duodenalis may be capable of metabolising albendazole and the potential path of the metabolised drug traced within the trophozoite. Fluorescence measurements revealed that albendazole sulphoxide binding decreased and albendazole sulphone binding increased with exposure of the trophozoites to increasing albendazole concentration. This indicates that if albendazole was being metabolised by trophozoites, it occurred to a greater extent following exposure to higher albendazole concentrations. [source] Effect of renal impairment on the pharmacokinetics of bupropion and its metabolitesBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 2 2007Miia Turpeinen What is already known about this subject ,,There is an ongoing debate regarding the effect of renal impairment on CYP related metabolic activities. ,,The possible effect of renal impairment on hepatic CYP2B6 activity, or on bupropion pharmacokinetics in renally impaired subjects without dialysis treatment has not yet been investigated. What this study adds ,,Bupropion clearance was found to be significantly decreased in patients with renal impairment. ,,This study provides further evidence for interplay between the role of the kidney and liver in drug disposition, and opens novel lines of research with respect to the regulation of CYP2B6. Aims To investigate the effect of kidney disease on bupropion pharmacokinetics and on cytochrome P450 (CYP) 2B6 activity as measured by bupropion hydroxylation. Methods In an open parallel group study, 17 healthy, nonsmoking subjects and 10 patients with impaired kidney function received a single 150 mg oral dose of sustained release bupropion. Plasma concentrations of bupropion and its metabolites were measured for up to 72 h. Subjects were genotyped for the CYP2B6 SNPs 1459 C>T, 785 A>G and 516 G>T. Results Bupropion AUC was 126% higher (P < 0.0001, 95% CI +72%, +180%), Cmax 86% higher (P = 0.001, 95% CI +40%, +131%), CL/F 63% lower (P = 0.001, 95% CI ,29%, ,96%), and t1/2 140% longer (P = 0.001, 95% CI +76%, +204%) in renally impaired patients. However, only minor changes were detected in the concentrations of the metabolites. In renally impaired subjects the hydroxybupropion : bupropion AUC ratio was decreased by 66% (P = < 0.0001, 95% CI ,19%, ,114%) and the hydrobupropion : bupropion AUC ratio by 69% (P = 0.001, 95% CI +8%, ,146%) compared with controls. Conclusions The CL/F of bupropion was significantly lower in subjects with renal impairment. Because the principal metabolites of bupropion possess similar pharmacological activity to the parent compound, dosage recommendations for patients with renal impairment cannot be given. A direct effect of renal impairment on CYP2B6 activity could not be demonstrated by the present study design. [source] Stereospecificity and stereoselectivity of flobufen metabolic profile in male rats in vitro and in vivo: Phase I of biotransformationCHIRALITY, Issue 10 2001Vladimír Wsól Abstract Flobufen (F) is the original nonsteroidal antiinflammatory drug (NSAID) containing two enantiomers. The aim of this investigation was to elucidate the biotransformation pathway of F at chiral level in phase I of biotransformation. Stereoselectivity and stereospecificity of the respective enzymes were studied in male rats in vitro (microsomal and cytosolic fractions, hepatocytes suspension) and in vivo. The rac -F, (+)-R-F and (,)-S-F were used as substrates. Amounts of F enantiomers, 4-dihydroflobufen diastereoisomers (DHF) and other metabolites (M-17203, UM) were determined with a chiral HPLC method in two chromatographic runs on R,R-ULMO and allyl-terguride bonded columns. Stereoselective biotransformation of the two enantiomers of F was observed at all tested levels and significant bidirectional chiral inversion of enantiomers of F was observed in hepatocytes. Mean enantiomeric ratios of F concentrations (S-/R-), after rac -F incubations, ranging from 1.09 in cytosolic fraction to 18.23 in hepatocytes. Stereospecificity of the respective F reductases was also observed. (2R;4S)-DHF and (2S;4S)-DHF are the principal metabolites of F in microsomes and hepatocytes. Neither DHF diastereoisomers nor M-17203 were found in cytosolic fraction. Only the nonchiral metabolite, M-17203, was found in all urine and feces samples after oral administration of F. Chirality 13:754,759, 2001. © 2001 Wiley-Liss, Inc. [source] |