Home About us Contact | |||
Primary Production (primary + production)
Kinds of Primary Production Selected AbstractsEnvironmental Relations and Biophysical Transition: The Case of Trinket IslandGEOGRAFISKA ANNALER SERIES B: HUMAN GEOGRAPHY, Issue 4 2003Simron Jit Singh ABSTRACT To what extent is an island economy cut off from the rest of the world? Defined as a mass of land bounded by water, island societies connect and exchange with their surroundings rather intensely. Based on empirical research, this paper explores the role of a ,remote' island society on Trinket in generating or sheltering itself from the process of globalisation in which con-textually given borders are transgressed and displaced. To this end, we apply the concepts of societal metabolism and colonising natural processes operationalised by Material and Energy Flow Analysis (MEFA), and Human Appropriation of Net Primary Production (HANPP) respectively. Using these biophysical indicators, we describe the transition from a metabolism based upon the natural environment to metabolism based on exchange with other societies. Data presented in this paper further reveal a process of industrialisation and integration into the global market of a so-called ,closed' and ,inaccessible' island society. [source] Effects of Climate Change and Shifts in Forest Composition on Forest Net Primary ProductionJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 11 2008Jyh-Min Chiang Abstract Forests are dynamic in both structure and species composition, and these dynamics are strongly influenced by climate. However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (PnET-II Model) that will be associated with alterations in species composition. We selected four 200 × 200 km areas in Wisconsin, Maine, Arkansas, and the Ohio-West Virginia area, representing focal areas of potential species range shifts. PnET-II model simulations were carried out assuming that all forests achieved steady state, of which the species compositions were predicted by DISTRIB model with no migration limitation. The total NPP under the current climate ranged from 552 to 908 g C/m2 per year. The effects of potential species redistributions on NPP were moderate (,12% to +8%) compared with the influence of future climatic changes (,60% to +25%). The direction and magnitude of climate change effects on NPP were largely dependent on the degree of warming and water balance. Thus, the magnitude of future climate change can affect the feedback system between the atmosphere and biosphere. [source] Temporal coherence of aboveground net primary productivity in mesic grasslandsECOGRAPHY, Issue 3 2008Jana L. Heisler Synchrony in ecological variables over wide geographic areas suggests that large-scale environmental factors drive the structure and function of ecosystems and override more local-scale environmental variation. Described also as coherence, this phenomenon has been documented broadly in the ecological literature and has recently received increasing attention as scientists attempt to quantify the impacts of global changes on organisms and their habitats. Using a mesic grassland site in North America, we assessed coherence in ecosystem function by quantifying similarity in aboveground net primary production (ANPP) dynamics in 48 permanent sampling locations (PSLs) over a 16-yr period. Our primary objective was to characterize coherence across a broad geographic region (with similar ecosystem structure and function), and we hypothesized that precipitation and a similar fire frequency would strengthen coherence between PSLs. All 48 PSLs at our site (Konza Prairie Biological Station, Manhattan, KS, USA; KPBS) were exposed to a similar regional driver of ANPP (precipitation); however, local drivers (including differences in fire frequency and soil depth at different topographic positions) varied strongly among individual PSLs. For the purpose of this assessment, the watershed-level experimental design of KPBS was considered a model, which represented different fire management strategies across the Great Plains Region. Our analyses revealed a site-level (KPBS) coherence in ANPP dynamics of 0.53 for the period of 1984,1999. Annual fire enhanced coherence among PSLs to 0.76, whereas less frequent fire (fire exclusion or a 4-yr fire return interval) failed to further increase coherence beyond that of the KPBS site level. Soil depth also strongly influenced coherence among PSLs with shallow soils at upland sites showing strong coherence across fire regimes and annually burned uplands closely linked to annual precipitation dynamics. The lack of coherence in ecosystem function in PSLs with deep soils and low fire frequencies suggests that conservation and management efforts will need to be more location specific in such areas where biotic interactions may be more important than regional abiotic drivers. [source] Effects of summer grazing by reindeer on composition of vegetation, productivity and nitrogen cyclingECOGRAPHY, Issue 1 2001Johan Olofsson In this study, we investigated the effect of reindeer grazing on tundra heath vegetation in northern Norway. Fences, erected 30 yr ago, allowed us to compare winter grazed, lightly summer grazed and heavily summer grazed vegetation at four different sites. At two sites, graminoids dominated the heavily grazed zone completely, while ericoid dwarf shrubs had almost disappeared. In the other two areas, the increase of graminoids was almost significant. At one of the sites where graminoids dominated the heavily grazed area, we also measured plant biomass, primary production and nitrogen cycling. In this site, heavy grazing increased primary production and rate of nitrogen cycling, while moderate grazing decreased primary production. These results were inconsistent with the view that the highest productivity is found at intermediate grazing pressure. These results rather support the hypothesis that intensive grazing can promote a transition of moss-rich heath tundra into productive, graminoid-dominated steppe-like tundra vegetation. Moreover the results suggests that intermittent intensive reindeer grazing can enhance productivity of summer ranges. [source] Effects of insects on primary production in temperate herbaceous communities: a meta-analysisECOLOGICAL ENTOMOLOGY, Issue 5 2003Malcolm D. Coupe Abstract., 1. The effects of insects on primary production in temperate herbaceous communities were investigated in a meta-analysis. The following hypotheses were tested: (1) the effect of insects on primary production depends on community type, (2) the effect of insects on primary production varies as a function of productivity, (3) insects have a greater effect on primary production in communities with low species diversity, and (4) insects have a larger effect on primary production during outbreaks. 2. Data were collected from 24 studies in which insecticides were used to suppress insects in self-sown or pastoral communities. Effect sizes were calculated from sprayed and control plot standing crop or yield, expressed as the log response ratio, ln (sprayed plot phytomass/control plot phytomass). 3. There was a significant increase in primary production as a result of insect suppression. Forb-dominated communities showed a more variable response than graminoid communities. During outbreaks, insects had a greater negative impact on primary production. Effect size was unaffected by productivity or plant species richness. 4. Although insects lower primary production in a diversity of temperate herbaceous communities, the basic measures by which such communities are often described have little effect on the proportional impact that insects have on primary production. While outbreaks are significant predictors of higher negative impact on primary production, causes of outbreaks are not always related to traits of the plant community. [source] Responses of global plant diversity capacity to changes in carbon dioxide concentration and climateECOLOGY LETTERS, Issue 11 2008F. I. Woodward Abstract We model plant species diversity globally by country to show that future plant diversity capacity has a strong dependence on changing climate and carbon dioxide concentration. CO2 increase, through its impact on net primary production and warming is predicted to increase regional diversity capacity, while warming with constant CO2 leads to decreases in diversity capacity. Increased CO2 concentrations are unlikely to counter projected extinctions of endemic species, shown in earlier studies to be more strongly dependent on changing land use patterns than climate per se. Model predictions were tested against (1) contemporary observations of tree species diversity in different biomes, (2) an independent global map of contemporary species diversity and (3) time sequences of plant naturalisation for different locations. Good agreements between model, observations and naturalisation patterns support the suggestion that future diversity capacity increases are likely to be filled from a ,cosmopolitan weed pool' for which migration appears to be an insignificant barrier. [source] Magnitude and variability of process rates in fungal diversity-litter decomposition relationshipsECOLOGY LETTERS, Issue 11 2005Christian K. Dang Abstract There is compelling evidence that losses in plant diversity can alter ecosystem functioning, particularly by reducing primary production. However, impacts of biodiversity loss on decomposition, the complementary process in the carbon cycle, are highly uncertain. By manipulating fungal decomposer diversity in stream microcosm experiments we found that rates of litter decomposition and associated fungal spore production are unaffected by changes in decomposer diversity under benign and harsher environmental conditions. This result calls for caution when generalizing outcomes of biodiversity experiments across systems. In contrast to their magnitude, the variability of process rates among communities increased when species numbers were reduced. This was most likely caused by a portfolio effect (i.e. statistical averaging), with the uneven species distribution typical of natural communities tending to weaken that effect. Curbing species extinctions to maintain ecosystem functioning thus can be important even in situations where process rates are unaffected. [source] Trophic control of grassland production and biomass by pathogensECOLOGY LETTERS, Issue 2 2003Charles E. Mitchell Abstract Current theories of trophic regulation of ecosystem net primary production and plant biomass incorporate herbivores, but not plant pathogens. Obstacles to the incorporation of pathogens include a lack of data on pathogen effects on primary production, especially outside agricultural and forest ecosystems, and an apparent inability to quantify pathogen biomass. Here, I report the results of an experiment factorially excluding foliar fungal pathogens and insect herbivores from an intact grassland ecosystem. At peak in control plots, 8.9% of community leaf area was infected by pathogens. Disease reduction treatment dramatically increased root production and biomass by increasing leaf longevity and photosynthetic capacity. In contrast, herbivory reduction had no detectable effects at the ecosystem or leaf scale. Additionally, biomass of foliar fungal pathogens in the ecosystem was comparable with that of insect herbivores. These results identify pathogens as potential regulators of ecosystem processes and promote the incorporation of pathogens into trophic theory. [source] Molecular analysis of the phosphorus starvation response in Trichodesmium spp.ENVIRONMENTAL MICROBIOLOGY, Issue 9 2009Elizabeth D. Orchard Summary The marine diazotroph Trichodesmium is a major contributor to primary production and nitrogen fixation in the tropical and subtropical oceans. These regions are often characterized by low phosphorus (P) concentrations, and P starvation of Trichodesmium could limit growth, and potentially constrain nitrogen fixation. To better understand how this genus responds to P starvation we examined four genes involved in P acquisition: two copies of a high-affinity phosphate binding protein (pstS and sphX) and two putative alkaline phosphatases (phoA and phoX). Sequence analysis of these genes among cultured species of Trichodesmium (T. tenue, T. erythraeum, T. thiebautii and T. spiralis) showed that they all are present and conserved within the genus. In T. erythraeum IMS101, the expression of sphX, phoA and phoX were sensitive to P supply whereas pstS was not. The induction of alkaline phosphatase activity corresponded with phoA and phoX expression, but enzyme activity persisted after the expression of these genes returned to basal levels. Additionally, nifH (nitrogenase reductase; involved in nitrogen fixation) expression was downregulated under P starvation conditions. These data highlight molecular level responses to low P and lay a foundation for better understanding the dynamics of Trichodesmium P physiology in low-P environments. [source] Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?ENVIRONMENTAL MICROBIOLOGY, Issue 7 2009Lucas J. Stal Summary Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed almost exclusively to cyanobacteria. This is remarkable firstly because diazotrophic cyanobacteria are found in other environments irrespective of temperature and secondly because primary production in temperate and cold oceans is generally limited by nitrogen. Cyanobacteria are oxygenic phototrophic organisms that evolved a variety of strategies protecting nitrogenase from oxygen inactivation. Free-living diazotrophic cyanobacteria in the ocean are of the non-heterocystous type, namely the filamentous Trichodesmium and the unicellular groups A,C. I will argue that warm water is a prerequisite for these diazotrophic organisms because of the low-oxygen solubility and high rates of respiration allowing the organism to maintain anoxic conditions in the nitrogen-fixing cell. Heterocystous cyanobacteria are abundant in freshwater and brackish environments in all climatic zones. The heterocyst cell envelope is a tuneable gas diffusion barrier that optimizes the influx of both oxygen and nitrogen, while maintaining anoxic conditions inside the cell. It is not known why heterocystous cyanobacteria are absent from the temperate and cold oceans and seas. [source] Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface watersENVIRONMENTAL MICROBIOLOGY, Issue 2 2009Jorge Frias-Lopez Summary Prochlorococcus and Synechococcus are the two most abundant marine cyanobacteria. They represent a significant fraction of the total primary production of the world oceans and comprise a major fraction of the prey biomass available to phagotrophic protists. Despite relatively rapid growth rates, picocyanobacterial cell densities in open-ocean surface waters remain fairly constant, implying steady mortality due to viral infection and consumption by predators. There have been several studies on grazing by specific protists on Prochlorococcus and Synechococcus in culture, and of cell loss rates due to overall grazing in the field. However, the specific sources of mortality of these primary producers in the wild remain unknown. Here, we use a modification of the RNA stable isotope probing technique (RNA-SIP), which involves adding labelled cells to natural seawater, to identify active predators that are specifically consuming Prochlorococcus and Synechococcus in the surface waters of the Pacific Ocean. Four major groups were identified as having their 18S rRNA highly labelled: Prymnesiophyceae (Haptophyta), Dictyochophyceae (Stramenopiles), Bolidomonas (Stramenopiles) and Dinoflagellata (Alveolata). For the first three of these, the closest relative of the sequences identified was a photosynthetic organism, indicating the presence of mixotrophs among picocyanobacterial predators. We conclude that the use of RNA-SIP is a useful method to identity specific predators for picocyanobacteria in situ, and that the method could possibly be used to identify other bacterial predators important in the microbial food-web. [source] Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae)ENVIRONMENTAL MICROBIOLOGY, Issue 6 2005Francisco Rodríguez Summary The importance of the cyanobacteria Prochlorococcus and Synechococcus in marine ecosystems in terms of abundance and primary production can be partially explained by ecotypic differentiation. Despite the dominance of eukaryotes within photosynthetic picoplankton in many areas a similar differentiation has never been evidenced for these organisms. Here we report distinct genetic [rDNA 18S and internal transcribed spacer (ITS) sequencing], karyotypic (pulsed-field gel electrophoresis), phenotypic (pigment composition) and physiological (light-limited growth rates) traits in 12 Ostreococcus strains (Prasinophyceae) isolated from various marine environments and depths, which suggest that the concept of ecotype could also be valid for eukaryotes. Internal transcribed spacer phylogeny grouped together four deep strains isolated between 90 m and 120 m depth from different geographical origins. Three deep strains displayed larger chromosomal bands, different chromosome hybridization patterns, and an additional chlorophyll (chl) c -like pigment. Furthermore, growth rates of deep strains show severe photo-inhibition at high light intensities, while surface strains do not grow at the lowest light intensities. These features strongly suggest distinct adaptation to environmental conditions encountered at surface and the bottom of the oceanic euphotic zone, reminiscent of that described in prokaryotes. [source] Direct and indirect effects of a potential aquatic contaminant on grazer,algae interactionsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2009Michelle A. Evans-White Abstract Contaminants have direct, harmful effects across multiple ecological scales, including the individual, the community, and the ecosystem levels. Less, however, is known about how indirect effects of contaminants on consumer physiology or behavior might alter community interactions or ecosystem processes. We examined whether a potential aquatic contaminant, an ionic liquid, can indirectly alter benthic algal biomass and primary production through direct effects on herbivorous snails. Ionic liquids are nonvolatile organic salts being considered as an environmentally friendly potential replacement for volatile organic compounds in industry. In two greenhouse experiments, we factorially crossed four concentrations of 1-N-butyl-3-methylimidazolium bromide (bmimBr; experiment 1: 0 or 10 mg/L; experiment 2: 0, 1, or 100 mg/L) with the presence or absence of the snail Physa acuta in aquatic mesocosms. Experimental results were weighted by their respective control (no bmimBr or P. acuta) and combined for statistical analysis. When both bmimBr and snails were present, chlorophyll a abundance and algal biovolume were higher than would be expected if both factors acted additively. In addition, snail growth rates, relative to those of controls, declined by 41 to 101% at 10 and 100 mg/L of bmimBr. Taken together, these two results suggest that snails were less efficient grazers in the presence of bmimBr, resulting in release of algae from the grazer control. Snails stimulated periphyton primary production in the absence, but not in the presence, of bmimBr, suggesting that bmimBr also can indirectly alter ecosystem function. These findings suggest that sublethal contaminant levels can negatively impact communities and ecosystem processes via complex interactions, and they provide baseline information regarding the potential effects of an emergent industrial chemical on aquatic systems. [source] Limitation of oxygenic photosynthesis and oxygen consumption by phosphate and organic nitrogen in a hypersaline microbial mat: a microsensor studyFEMS MICROBIOLOGY ECOLOGY, Issue 1 2006Rebecca Ludwig Abstract Microbial mats are characterized by high primary production but low growth rates, pointing to a limitation of growth by the lack of nutrients or substrates. We identified compounds that instantaneously stimulated photosynthesis rates and oxygen consumption rates in a hypersaline microbial mat by following the short-term response (c. 6 h) of these processes to addition of nutrients, organic and inorganic carbon compounds, using microsensors. Net photosynthesis rates were not stimulated by compound additions. However, both gross photosynthesis and oxygen consumption were substantially stimulated (by a minimum of 25%) by alanine (1 mM) and glutamate (3.5 mM) as well as by phosphate (0.1 mM). A low concentration of ammonium (0.1 mM) did not affect photosynthesis and oxygen consumption, whereas a higher concentration (3.5 mM) decreased both process rates. High concentrations of glycolate (5 mM) and phosphate (1 mM) inhibited gross photosynthesis but not oxygen consumption, leading to a decrease of net photosynthesis. Photosynthesis was not stimulated by addition of inorganic carbon, nor was oxygen consumption stimulated by organic compounds like glycolate (5 mM) or glucose (5 mM), indicating that carbon was efficiently cycled within the mat. Photosynthesis and oxygen consumption were apparently tightly coupled, because stimulations always affected both processes to the same extent, which resulted in unchanged net photosynthesis rates. These findings illustrate that microsensor techniques, due to their ability to quantify all three processes, can clarify community responses to nutrient enrichment studies much better than techniques that solely monitor net fluxes. [source] Fish habitat requirements as the basis for rehabilitation of eutrophic lakes by oxygenationFISHERIES MANAGEMENT & ECOLOGY, Issue 3-4 2004R. Müller Abstract Eutrophic lakes often suffer from hypolimnetic oxygen depletion during summer and autumn, and the accumulation of reduced substances in the hypolimnion. The space fish can occupy is therefore reduced, and the potential for fish kills caused by toxic algae and the upwelling of anoxic water increases. Fish, such as coregonids, require at least 4 mg O2 L,1 to survive in the long-term. This critical level has been postulated as one of the major goals for the rehabilitation of several eutrophic Swiss lakes. It was predicted that this oxygen criterion would reduce phosphorus release from the sediment and increase phosphorus retention, and re-establish natural reproduction of coregonids. Rehabilitation measures applied to three eutrophic Swiss lakes were hypolimnetic oxygenation during summer stratification, and artificial mixing using compressed air to enhance circulation in winter. These lake-internal measures carried out for more than 15 years showed the 4 mg O2 L,1 criterion can be achieved most of the time. The measures have led to an expansion of habitat for oxygen-dependent organisms to greater depths. However, other goals were not attained, such as increasing phosphorus retention by the sediment. In addition, natural reproduction of coregonids could not be re-established. Excessive oxygen consumption by the sediment, arising from the decomposition of deposited organic matter produced during summer, caused death by suffocation of coregonid eggs developing on the sediment. Thus rehabilitation of eutrophic lakes by oxygenating the hypolimnion and artificial mixing will not be successful, unless it is accompanied by lowering the nutrient loading and thus primary production and oxygen consumption by the sediment. Nevertheless, positive effects of lake aeration were the expansion of living space for fish and benthic invertebrates, and the prevention of fish kills by upwelling anoxic hypolimnetic water. [source] Fluctuations in European eel (Anguilla anguilla) recruitment resulting from environmental changes in the Sargasso SeaFISHERIES OCEANOGRAPHY, Issue 1 2008SYLVAIN BONHOMMEAU Abstract European eel decline is now widely observed and involves a large number of factors such as overfishing, pollution, habitat loss, dam construction, river obstruction, parasitism and environmental changes. In the present study, we analyzed the influence of environmental conditions in the Sargasso Sea and Atlantic ocean circulation on European glass eel recruitment success. Over a recent 11-yr period, we showed a strong positive correlation between an original index of glass eel recruitment and primary production (PP) in eel spawning area. Moreover, PP was negatively correlated with temperature in the Sargasso Sea. Therefore, we used sea temperature as an inverse proxy of marine production. A close negative relationship has been found over the last four decades between long-term fluctuations in recruitment and in sea temperature. These findings were reinforced by the detection of a regime shift in sea temperature that preceded the start of the decline in glass eel recruitment in the early 1980s. By contrast, variations in integrative indices measuring ocean circulation, i.e. latitude and strength of the Gulf Stream, did not seem to explain variations in glass eel recruitment. Our results support the hypothesis of a strong bottom-up control of leptocephali survival and growth by PP in the Sargasso Sea on short and long time scales. We argue that sea warming in the eel spawning area since the early 1980s has modified marine production and eventually affected the survival rate of European eels at early life stages. [source] Life histories of Eucalanus bungii and Neocalanus cristatus (Copepoda: Calanoida) in the western subarctic Pacific OceanFISHERIES OCEANOGRAPHY, Issue 2004ATSUSHI TSUDA Abstract Life cycles of the large suspension-feeding copepods, Eucalanus bungii and Neocalanus cristatus were investigated by seasonal sampling in the western subarctic Pacific. Eucalanus bungii has a diapause from August to March at copepodite stages between copepodite 3 (C3) and C6 female. We propose that individuals with early birth dates are young of overwintering C5 and C6-females that develop to C4 in their birth year, while individuals with late birth dates are young of overwintering C4 that develop to C3 in their birth year. Thus, a majority of the population has annual generations alternating with biennial generations. Neocalanus cristatus showed life history almost identical to the population in the Alaskan gyre. Timing of the life cycle in N. cristatus is very close to that in the eastern subarctic gyre, but that of E. bungii is 2 months earlier than in the eastern subarctic. This difference is probably caused by the timing difference in the maximum primary production in the two areas and the plasticity of the life cycle strategy in E. bungii. [source] Seasonal changes in the reproduction of three oncaeid copepods in the surface layer of the Kuroshio ExtensionFISHERIES OCEANOGRAPHY, Issue 2004KAORU NAKATA Abstract Seasonal changes in reproduction rates of three dominant oncaeids, Oncaea media, O. venusta f. venella and O. venusta f. ,1, and effects of environmental factors on them were examined in the surface layer (0,30 m) in the Kuroshio Extension and adjacent waters off the Pacific coast of central Japan. The biomass of oncaeid copepods peaked in spring, and remained at about 14% of total copepod biomass throughout the year. Monthly mean specific egg production rates of O. media, O. venusta f. ,1 and O. venusta f. venella ranged from 0 to 0.038 day,1, from 0.026 to 0.051 day,1 and from 0.022 to 0.049 day,1, respectively, and were relatively higher from winter to spring. Specific egg production rates of both O. media and O. venusta f. venella were positively related to primary production in the euphotic layer. Analysis of temperature effects on reproduction parameters indicated that low temperature was one cause for high specific egg production rates of O. venusta f. ,1 in winter, mainly because of an increase in clutch size. Environmental factors thus affect reproduction of the dominant oncaeids in the surface layer of the Kuroshio Extension, and an increase in temperature and decline in primary production would reduce their reproduction. [source] Decadal-scale variations of ecosystem productivity and control mechanisms in the Bohai SeaFISHERIES OCEANOGRAPHY, Issue 4-5 2003Qisheng Tang Abstract Decadal-scale variations of ecosystem productivity in the Bohai Sea are described by using the survey data of 1959,60, 1982,83, 1992,93 and 1998,99. Indices including chlorophyll a concentration, primary production, phytoplankton abundance, zooplankton biomass and fishery biomass were used to describe the ecosystem productivity at different trophic levels. During the past four decades, the productivity and community structure of the Bohai Sea ecosystem has been highly variable. Primary productivity and fish productivity decreased from 1959 to 1998, such that phytoplankton abundance in 1992 and 1998 was about 38% of that in 1959 and 1982, fishery biomass in 1998 was particularly low, which was only about 5% of that in 1959. Zooplankton secondary productivity also showed a decreasing trend from 1959 to 1992, but reached high levels in 1998, about three times as much as 1959 and 1982, and four times as much as 1992. These results indicate that a large variation in ecosystem productivity is one of the important characteristics of coastal ecosystem dynamics. Therefore, it is impossible to apply a single theory to explain the causes of variations in the Bohai Sea ecosystem as the changes in productivity are likely to be forced and/or modulated by multiple mechanisms. [source] Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary resultsFISHERIES OCEANOGRAPHY, Issue 4-5 2003Harilaos Loukos Abstract Recent studies suggest a reduction of primary production in the tropical oceans because of changes in oceanic circulation under global warming conditions caused by increasing atmospheric CO2 concentration. This might affect the productivity of medium and higher trophic levels with potential consequences on marine resources such as tropical tuna. Here we combine the projections of up-to-date climate and ocean biogeochemical models with recent concepts of representation of fish habitat based on prey abundance and ambient temperature to gain some insight into the impact of climate change on skipjack tuna (Katsuwonus pelamis), the species that dominates present-day tuna catch. For a world with doubled atmospheric CO2 concentration, our results suggest significant large-scale changes of skipjack habitat in the equatorial Pacific. East of the date line, conditions could be improved by an extension of the present favourable habitat zones of the western equatorial Pacific, a feature reminiscent of warming conditions associated with El Niño events. Despite its simplicity and the associated underlying hypothesis, this first simulation is used to stress future research directions and key issues for modelling developments associated to global change. [source] Phosphorus and nitrogen in a monomictic freshwater lake: employing cyanobacterial bioreporters to gain new insights into nutrient bioavailabilityFRESHWATER BIOLOGY, Issue 6 2010OSNAT GILLOR Summary 1. It is an uncontested paradigm that an adequate supply of the macronutrients nitrogen (N) and phosphorus (P) is critical for maintaining phytoplankton primary production in aquatic ecosystems; it has also been suggested that there is an optimal total N : total P ratio for this globally significant process. 2. This ratio, normally assessed by chemical determination of the major dissolved N and P species, poses a dilemma: do chemical measurements actually reflect the bioavailable fraction of these nutrient pools? Accurate determination of the various N and P species and their fluxes into phytoplankton cells is notoriously difficult. 3. To provide a possible solution to this difficulty, we engineered strains of the cyanobacterium Synechococcus sp. strain PCC 7942 that ,report' on N and P bioavailability via a bioluminescent signal. These strains were used to quantify, for the first time, bioavailable concentrations of these essential macronutrients in a freshwater lake. 4. Only a small fraction (0.01,1%) of the chemically determined P may actually be bioavailable to this unicellular cyanobacterium and, by inference, to the phytoplankton community in general. In contrast, bioavailable N comprises most of the dissolved N pool. Consequently, bioavailable N : P ratios based on these assays are higher then those based on chemical determinations, indicating that P limitation in Lake Kinneret is more extensive then previously thought. [source] Abundance and production of bacteria, and relationship to phytoplankton production, in a large tropical lake (Lake Tanganyika)FRESHWATER BIOLOGY, Issue 6 2009STEPHANE STENUITE Summary 1. Abundance and bacterial production (BP) of heterotrophic bacteria (HBact) were measured in the north and south basins of Lake Tanganyika, East Africa, during seasonal sampling series between 2002 and 2007. The major objective of the study was to assess whether BP can supplement phytoplankton particulate primary production (particulate PP) in the pelagic waters, and whether BP and particulate PP are related in this large lake. HBact were enumerated in the 0,100 m surface layer by epifluorescence microscopy and flow cytometry; BP was quantified using 3H-thymidine incorporation, usually in three mixolimnion layers (0,40, 40,60 and 60,100 m). 2. Flow cytometry allowed three subpopulations to be distinguished: low nucleic acid content bacteria (LNA), high nucleic acid content bacteria (HNA) and Synechococcus -like picocyanobacteria (PCya). The proportion of HNA was on average 67% of total bacterial abundance, and tended to increase with depth. HBact abundance was between 1.2 × 105 and 4.8 × 106 cells mL,1, and was maximal in the 0,40 m layer (i.e. roughly, the euphotic layer). Using a single conversion factor of 15 fg C cell,1, estimated from biovolume measurements, average HBact biomass (integrated over a 100-m water column depth) was 1.89 ± 1.05 g C m,2. 3. Significant differences in BP appeared between seasons, especially in the south basin. The range of BP integrated over the 0,100 m layer was 93,735 mg C m,2 day,1, and overlapped with the range of particulate PP (150,1687 mg C m,2 day,1) measured in the same period of time at the same sites. 4. Depth-integrated BP was significantly correlated to particulate PP and chlorophyll- a, and BP in the euphotic layer was on average 25% of PP. 5. These results suggest that HBact contribute substantially to the particulate organic carbon available to consumers in Lake Tanganyika, and that BP may be sustained by phytoplankton-derived organic carbon in the pelagic waters. [source] Benthic metabolism in two turbid dryland riversFRESHWATER BIOLOGY, Issue 2 2009CHRISTINE S. FELLOWS Summary 1.,Australian dryland rivers have among the most variable discharge of any rivers worldwide and are characterized by extended periods of no flow during which aquatic habitat contracts into isolated waterholes. Despite naturally high turbidity, benthic primary production is known to be the main source of carbon to waterhole food webs. The objective of this study was to quantify rates of benthic metabolism and identify factors influencing these rates in two Australian dryland rivers, the Cooper Creek and the Warrego River. 2.,Both rivers have similar variable hydrology and high levels of turbidity (photic depths < 0.4 m), but fish abundance in Cooper Creek is 10 times than that of the Warrego River. Therefore, an additional aim of the study was to determine if fish abundances reflected underlying differences in benthic primary production. 3.,Benthic gross primary production (GPP), benthic respiration, nutrient concentrations and light penetration were measured immediately after flow had ceased (,post-flow') and after at least 2 months of zero flow (,no-flow') in 15 waterholes from each river. A subset of four waterholes from each river was sampled on two additional occasions to determine if patterns were consistent over time. 4. Cooper Creek generally had higher rates of GPP and a more autotrophic benthic zone than the Warrego River. As a result, the expected positive relationship between fish abundance and GPP was generally observed at a broad catchment scale. 4.,Light was the major control in benthic GPP in both rivers, as nutrient concentrations were high on all sampling occasions. However, for similar values of photic depth, GPP was greater in Cooper Creek than in the Warrego River. This suggests that more frequent disturbance of the littoral zone may inhibit biofilm development in waterholes of the Warrego River. 5.,Although flow variability in dryland rivers is extreme compared with other rivers worldwide, cycles of expansion and contraction of aquatic habitat in these two rivers were associated with a shift in the dominance of regional scale (subcatchments contributing to river flow) versus local scale (waterhole morphology) influences on ecosystem functioning, similar to floodplain rivers in tropical and temperate regions. [source] Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lakeFRESHWATER BIOLOGY, Issue 10 2008JENG-WEI TSAI Summary 1. We used high-frequency in situ dissolved oxygen measurements to investigate the seasonal variability and factors regulating metabolism in a subtropical alpine lake in Taiwan between May 2004 and October 2005, specifically exploring how the typhoon season (from June or July to October) affects lake metabolism. 2. Gross primary production (GPP) and ecosystem respiration (R) both peaked in early summer and mid-autumn but dropped during the typhoon season and winter. Yuan-Yang Lake is a net heterotrophic ecosystem (annual mean net ecosystem production ,39.6 ,mole O2 m,3). 3. Compared to the summer peaks, seasonal averages of GPP and R decreased by approximately 50% and 25%, respectively, during the typhoon season. Ecosystem respiration was more resistant to external disturbances than GPP and showed strong daily variation during typhoon seasons. 4. Changes in the quality and quantity of dissolved organic carbon controlled the temporal dynamics and metabolic regulation. External disturbances (typhoons) caused increased allochthony, increasing DOC and water colour and influencing lake metabolism. 5. Seasonal winter mixing and typhoon-induced water mixing in summer and autumn play a key role in determining the extent to which the lake is a seasonal carbon sink or source to the atmosphere. [source] The significance of side-arm connectivity for carbon dynamics of the River Danube, AustriaFRESHWATER BIOLOGY, Issue 2 2008S. PREINER Summary 1. Side-arms connected to the main stem of the river are key areas for biogeochemical cycling in fluvial landscapes, exhibiting high rates of carbon processing. 2. This work focused on quantifying autochthonous and allochthonous carbon pools and, thereby, on comparing transport and transformation processes in a restored side-arm system of the River Danube (Regelsbrunn). We established a carbon budget and quantified carbon processing from March to September 2003. In addition, data from previous studies during 1997 to 1999 were assessed. 3. Gross primary production (GPP) and community respiration were estimated by diel oxygen time curves and an oxygen mass balance. Plankton primary production was determined to estimate its contribution to GPP under different hydrological conditions. 4. Based on the degree of connectivity, three hydrological phases were differentiated. Most of the organic matter, dominated by allochthonous carbon, was transported in the main channel and through the side-arm during floods, while at intermediate and low flows (and thus connectivity), transformation processes became more important and autochthonous carbon dominated the carbon pool. The side-arm system functioned as a sink for particulate matter [total suspended solids and particulate organic carbon (POC)] and a source of dissolved organic carbon (DOC) and chlorophyll- a. 5. Autochthonous primary production of 4.2 t C day,1 in the side-arm was equivalent to about 20% of the allochthonous inputs of 20 t C day,1 (POC and DOC) entering the area at mean flow (1% of the discharge of the main channel). Pelagic photosynthesis was generally high at mean flow (1.3,3.8 g C m,2 day,1), and contributed up to 90% of system productivity. During long stagnant periods at low discharge, the side-arm was controlled by biological processes and a shift from planktonic to benthic activity occurred (benthic primary production of 0.4,14 g C m,2 day,1). 6. The transformation of the organic matter that passes through the side-arm under different hydrological conditions, points to the importance of these subsystems in contributing autochthonous carbon to the food web of the main channel. [source] A simple model of the eco-hydrodynamics of the epilimnion of Lake TanganyikaFRESHWATER BIOLOGY, Issue 11 2007JAYA NAITHANI Summary 1. The ecosystem response of Lake Tanganyika was studied using a four-component, nutrient,phytoplankton,zooplankton,detritus, phosphorus-based ecosystem model coupled to a nonlinear, reduced-gravity, circulation model. The ecosystem model, an improved version of the earlier eco-hydrodynamics model developed for Lake Tanganyika, was used to estimate the annual primary production of Lake Tanganyika and its spatial and temporal variability. The simulations were driven with the National Centres for Environmental Protection (NCEP) records for winds and solar radiation forcing. 2. The simulated annual cycles of the four ecosystem variables and the daily net primary production were compared with the observations. The comparison showed that simulations reproduced realistically the general features of the annual cycles of epilimnial phosphate, net primary production and plankton dynamics. 3. The climatic simulations for the years 1970,2006 yielded a daily averaged integrated upper layer net production ranging from 0.11 to 1.78 g C m,2 day,1 and daily averaged chlorophyll- a (chl- a) from 0.16 to 4.3 mg m,3. Although the nutrient concentrations in the epilimnion during the strong wind years were high, the net production was low, which is partly because of the greater vertical mixing, produced by strong winds, exposing the phytoplankton to low light conditions in deeper waters. The simulated annual net production and chl- a agreed quite well with observed production available in the literature. 4. We envisage using this model to predict the future scenarios of primary productivity in the lake. [source] Phytoplankton production and growth rate in Lake Tanganyika: evidence of a decline in primary productivity in recent decadesFRESHWATER BIOLOGY, Issue 11 2007STEPHANE STENUITE Summary 1. This study focused on phytoplankton production in Lake Tanganyika. We provide new estimates of daily and annual primary production, as well as growth rates of phytoplankton, and we compare them with values published in former studies. 2. Chlorophyll- a (chl- a) in the mixed layer ranged from 5 to 120 mg chl- a m,2 and varied significantly between rainy and dry seasons. Particulate organic carbon concentrations were significantly higher in the south basin (with 196 and 166 mg C m,3 in the dry and the rainy season, respectively) than in the north basin (112 and 109 mg C m,3, respectively). 3. Carbon : phosphorus (C : P) ratios varied according to season. Phosphorus limitation seemed to occur more frequently than nitrogen limitation, especially during the rainy season. Severe P deficiencies were rare. 4. Measured particulate daily primary production ranged from 110 to 1410 mg C m,2 day,1; seasonal contrasts were well marked in the north basin, but less in the south basin, where primary production peaks occurred also in the rainy season. Estimates of annual primary production, based on daily primary production calculated from chl- a and water transparency, gave values lower than those reported in previous studies. Picophytoplankton accounted on average for 56% of total particulate production in the south basin during the wet season of 2003. 5. Phytoplankton growth rates, calculated from primary production, ranged from 0.055 to 0.282 day,1; these are lower than previously published values for Lake Tanganyika. [source] Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a floodprone river during a 15-year periodFRESHWATER BIOLOGY, Issue 5 2006URS UEHLINGER Summary 1. Temporal variation in ecosystem metabolism over a 15-year period (1986,2000) was evaluated in a seventh order channelised gravel bed river (mean annual discharge 48.7 m3 s,1) of the Swiss Plateau. The river is subject to frequent disturbance by bed-moving spates. Daily integrals of gross primary production (GPP) and ecosystem respiration (ER) were calculated based on single-station diel oxygen curves. 2. Seasonal decomposition of the time series of monthly metabolism rates showed that approximately 50% of the variation of GPP and ER can be attributed to season. Annual GPP averaged 5.0 ± 0.6 g O2 m,2 day,1 and showed no long-term trend. 3. Ecosystem respiration, averaging 6.2 ± 1.4 g O2 m,2 day,1, declined from 8.8 to 4.1 g O2 m,2 day,1 during the 15-year period. This significant trend paralleled a decline in nitrate and soluble reactive phosphorus concentrations, and the biochemical oxygen demand discharged by sewage treatment facilities upstream of the study reach. The ratio of GPP to ER (P/R) increased from 0.53 to about 1 as consequence of ER reduction. 4. Bed moving spates reduced GPP by 49% and ER by 19%. Postspate recovery of GPP was rapid between spring and autumn and slow during winter. Recovery of ER lacked any seasonal pattern. Annual patterns of daily GPP and to a minor extent of daily ER can be described as a sequence of recovery periods frequently truncated by spates. 5. The study showed that disturbance by frequent bed-moving spates resulted in major stochastic variation in GPP and ER but annual patterns were still characterised by a distinct seasonal cycle. It also became evident that stream metabolism is a suitable method to assess effects of gradual changes in water quality. [source] Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakesFRESHWATER BIOLOGY, Issue 10 2005MARTIN SØNDERGAARD Summary 1.,Concentrations of phosphorus, nitrogen and silica and alkalinity were monitored in eight shallow and four deep Danish lakes for 13 years following a phosphorus loading reduction. The aim was to elucidate the seasonal changes in nutrient concentrations during recovery. Samples were taken biweekly during summer and monthly during winter. 2.,Overall, the most substantive changes in lake water concentrations were seen in the early phase of recovery. However, phosphorus continued to decline during summer as long as 10 years after the loading reduction, indicating a significant, albeit slow, decline in internal loading. 3.,Shallow and deep lakes responded differently to reduced loading. In shallow lakes the internal phosphorus release declined significantly in spring, early summer and autumn, and only non-significantly so in July and August. In contrast, in deep lakes the largest reduction occurred from May to August. This difference may reflect the much stronger benthic pelagic-coupling and the lack of stratification in shallow lakes. 4.,Nitrogen only showed minor changes during the recovery period, while alkalinity increased in late summer, probably conditioned by the reduced primary production, as also indicated by the lower pH. Silica tended to decline in winter and spring during the study period, probably reflecting a reduced release of silica from the sediment because of enhanced uptake by benthic diatoms following the improved water transparency. 5.,These results clearly indicate that internal loading of phosphorus can delay lake recovery for many years after phosphorus loading reduction, and that lake morphometry (i.e. deep versus shallow basins) influences the patterns of change in nutrient concentrations on both a seasonal and interannual basis. [source] Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainmentFRESHWATER BIOLOGY, Issue 2 2004Marc Schallenberg Summary 1. Wind-induced sediment resuspension can affect planktonic primary productivity by influencing light penetration and nutrient availability, and by contributing meroplankton (algae resuspended from the lake bed) to the water column. We established relationships between sediment resuspension, light and nutrient availability to phytoplankton in a shallow lake on four occasions. 2. The effects of additions of surficial sediments and nutrients on the productivity of phytoplankton communities were measured in 300 mL gas-tight bottles attached to rotating plankton wheels and exposed to a light gradient, in 24 h incubations at in situ temperatures. 3. While sediment resuspension always increased primary productivity, resuspension released phytoplankton from nutrient limitation in only two of the four experiments because the amount of available nitrogen and phosphorus entrained from the sediments was small compared with typical baseline levels in the water column. In contrast, chlorophyll a entrainment was substantial compared with baseline water column concentrations and the contribution of meroplankton to primary production was important at times, especially when seasonal irradiance in the lake was high. 4. Comparison of the in situ light climate with the threshold of light-limitation of the phytoplankton indicated that phytoplankton in the lake were only likely to be light-limited at times of extreme turbidity (e.g. >200 nephelometric turbidity units), particularly when these occur in winter. Therefore, resuspension influenced phytoplankton production mainly via effects on available nutrients and by entraining algae. The importance of each of these varied in time. 5. The partitioning of primary productivity between the water column and sediments in shallow lakes greatly influences the outcome of resuspension events for water column primary productivity. [source] |