Primary Human Osteoblasts (primary + human_osteoblast)

Distribution by Scientific Domains


Selected Abstracts


Matrix Regulation of Skeletal Cell Apoptosis II: Role of Arg-Gly-Asp-Containing Peptides

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2002
Robert L. Perlot Jr.
Abstract This investigation was based on the assumption that arg-gly-asp (RGD)-containing peptides are released from the extracellular matrix of bone and cartilage during the remodeling cycle. We asked the question: Can RGD peptides influence skeletal cell viability? Primary human osteoblasts, mouse MC-3T3-E1 cells, and chick chondrocytes were incubated with purified RGD-containing peptides and cell viability was determined. The RGD peptide did not kill osteoblasts, chondrocytes, or MC-3T3-E1 cells. In contrast, RGDS and GRGDSP peptides killed all three cell types. Osteoblast death was quite rapid, occurring within 6 h of treatment. transferase uridyl mediated nick end labeling (TUNEL) and transmission electron microscopy (TEM) analysis indicated that death was mediated by apoptosis. To learn if mitochondria transduced the death signal, cells were treated with RGDS and organelle function was evaluated using a voltage-sensitive fluorescent probe. It was observed that there was no net loss of fluorescence and, hence, it was concluded that mitochondria were not the primary effectors of the apoptotic response. Experiments were performed with enzyme inhibitors to determine the import of the caspase pathway on RGDS-mediated osteoblast apoptosis. Results of these studies, as well as a study conducted using a fluorescent substrate, pointed to caspase 3 mediating the effector stage of the apoptotic process. Finally, using a purified labeled-RGDS peptide, we showed that the molecule was not restricted by the plasma membrane because it was accumulated in the cytosolic compartment. Results of the investigation support the view that resorption of the extracellular matrix generates peptide products that can induce apoptosis of vicinal cells. [source]


Association of a single nucleotide polymorphism in the steroid and xenobiotic receptor (SXR) gene (IVS1-579A/G) with bone mineral density

GERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 2 2007
Tomohiko Urano
Vitamin K2 plays an important role in the bone metabolism. The steroid and xenobiotic receptor (SXR) as a nuclear receptor activated by vitamin K2 as well as rifampicin could increase bone markers such as alkaline phosphatase in human osteoblastic cells. Thus, the SXR could mediate vitamin K2 signaling pathway in bone cells. Therefore, we analyzed expression of the SXR mRNA in human primary osteoblasts and chondrocytes. We also studied association of a single nucleotide polymorphism (SNP) in the SXR gene with bone mineral density (BMD). Expression levels of the SXR mRNA were analyzed during the culture course of human primary osteoblasts and chondrocytes. Association of a SNP in the SXR gene in intron 1 (IVS1-579A>G) with BMD was examined in 294 healthy postmenopausal Japanese women. The SXR mRNA increased at day 5 and then decreased at day 10 in human primary osteoblasts. Its mRNA gradually increased in human primary chondrocytes until day 10. As an association study of a SNP in the SXR gene (IVS1-579A/G), the subjects without the A allele (GG; n = 47) had significantly higher total BMD than the subjects bearing at least one A allele (AA + AG; n = 247) (Z score ± SD; 0.635 ± 1.031 versus 0.268 ± 1.061; P = 0.0298). The SXR mRNA was expressed and regulated in primary human osteoblasts and chondrocytes. A genetic variation at the SXR gene locus is associated with BMD, suggesting an involvement of the SXR gene in human bone metabolism. [source]


Cytokines, Osteoprotegerin, and RANKL In Vitro and Histomorphometric Indices of Bone Turnover in Patients With Different Bone Diseases,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2003
Heide Siggelkow
Abstract Cytokines are supposed to play an essential role in the regulation of the bone metabolic unit. However, information on cytokine production of primary human osteoblasts from patients with metabolic bone disease is scarce, and few attempts have been made to correlate such data to histomorphometric parameters of individual patients. We investigated 11 patients with metabolic bone disease referred to our outpatient department for bone biopsy and analyzed interleukin (IL)-1, IL-6, and TNF-, protein release and gene expression in primary osteoblast cultures. Compared with four controls, five patients showed normal cytokine protein release, whereas six patients showed much higher levels of interleukin-6 (26-fold) and TNF-, (84-fold). All three cytokines were strongly correlated concerning gene expression and/or protein levels (r = 0.72,0.96). Histomorphometric analysis of the bone samples showed that eroded surface (ES/BS) as a parameter of bone resorption was significantly associated with TNF-,. In addition, RANKL gene expression was positively associated with ES/BS and osteoclast surface (Oc.S/BS). Finally, the formation parameters osteoid volume and osteoid surface were negatively associated with TNF-,. In conclusion, in an in vitro-ex vivo model of bone cells obtained from a group of 11 patients with different forms of metabolic bone disease, cytokine release in conditioned medium was significantly associated with bone resorption and bone formation, as quantified by histomorphometry. TNF-, seemed to be the more important cytokine; its effect on bone resorption could be mediated by RANKL. [source]


Cobalt ions induce chemokine secretion in primary human osteoblasts,

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2009
J.M. Queally
Abstract Chemokines are major regulators of the inflammatory response and have been shown to play an important role in periprosthetic osteolysis. Titanium particles have previously been shown to induce IL-8 and MCP-1 secretion in osteoblasts. These chemokines result in the chemotaxis and activation of neutrophils and macrophages, respectively. Despite a resurgence in the use of cobalt-chromium-molybdenum alloys in metal-on-metal arthroplasty, cobalt and chromium ion toxicity in the periprosthetic area has been insufficiently studied. In this study we investigate the in vitro effect of cobalt ions on primary human osteoblast activity. We demonstrate that cobalt ions rapidly induce the protein secretion of IL-8 and MCP-1 in primary human osteoblasts. This elevated chemokine secretion is preceded by an increase in the transcription of the corresponding chemokine gene. Using a Transwell migration chemotaxis assay we also demonstrate that the chemokines secreted are capable of inducing neutrophil and macrophage migration. Furthermore, cobalt ions significantly inhibit osteoblast function as demonstrated by reduced alkaline phosphatase activity and calcium deposition. In aggregate these data demonstrate that cobalt ions can activate transcription of the chemokine genes IL-8 and MCP-1 in primary human osteoblasts. Cobalt ions are not benign and may play an important role in the pathogenesis of osteolysis by suppressing osteoblast function and stimulating the production and secretion of chemokines that attract inflammatory and osteoclastic cells to the periprosthetic area. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 855,864, 2009 [source]


Regulation of implant surface cell adhesion: characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2007
Manus J.P. Biggs
Abstract Integration of an orthopedic prosthesis for bone repair must be associated with osseointegration and implant fixation, an ideal that can be approached via topographical modification of the implant/bone interface. It is thought that osteoblasts use cellular extensions to gather spatial information of the topographical surroundings prior to adhesion formation and cellular flattening. Focal adhesions (FAs) are dynamic structures associated with the actin cytoskeleton that form adhesion plaques of clustered integrin receptors that function in coupling the cell cytoskeleton to the extracellular matrix (ECM). FAs contain structural and signalling molecules crucial to cell adhesion and survival. To investigate the effects of ordered nanotopographies on osteoblast adhesion formation, primary human osteoblasts (HOBs) were cultured on experimental substrates possessing a defined array of nanoscale pits. Nickel shims of controlled nanopit dimension and configuration were fabricated by electron beam lithography and transferred to polycarbonate (PC) discs via injection molding. Nanopits measuring 120 nm diameter and 100 nm in depth with 300 nm center,center spacing were fabricated in three unique geometric conformations: square, hexagonal, and near-square (300 nm spaced pits in square pattern, but with ±50 nm disorder). Immunofluorescent labeling of vinculin allowed HOB adhesion complexes to be visualized and quantified by image software. Perhipheral adhesions as well as those within the perinuclear region were observed, and adhesion length and number were seen to vary on nanopit substrates relative to smooth PC. S-phase cells on experimental substrates were identified with bromodeoxyuridine (BrdU) immunofluorescent detection, allowing adhesion quantification to be conducted on a uniform flattened population of cells within the S-phase of the cell cycle. Findings of this study demonstrate the disruptive effects of ordered nanopits on adhesion formation and the role the conformation of nanofeatures plays in modulating these effects. Highly ordered arrays of nanopits resulted in decreased adhesion formation and a reduction in adhesion length, while introducing a degree of controlled disorder present in near-square arrays, was shown to increase focal adhesion formation and size. HOBs were also shown to be affected morphologicaly by the presence and conformation of nanopits. Ordered arrays affected cellular spreading, and induced an elongated cellular phenotype, indicative of increased motility, while near-square nanopit symmetries induced HOB spreading. It is postulated that nanopits affect osteoblast,substrate adhesion by directly or indirectly affecting adhesion complex formation, a phenomenon dependent on nanopit dimension and conformation. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:273,282, 2007 [source]


Serum-mediated osteogenic effect in traumatic brain-injured patients

ANZ JOURNAL OF SURGERY, Issue 6 2009
Oliver P. Gautschi
Abstract Background:, Patients with a traumatic brain injury (TBI) and bone fractures often show an enhanced fracture healing, as well as an increased incidence of heterotopic ossifications (HO). It has been suggested that unknown osteoinductive factors may be released by the injured brain into the systemic blood circulation and act peripherally on the affected tissues. The aim of this study was to investigate whether serum from TBI patients is osteoinductive. Methods:, Sixty-one consecutive patients were classified into four groups: TBI and long-bone fracture (group I, n = 12), isolated severe TBI (group II, n = 21), isolated long-bone fracture (group III, n = 19) and controls (group IV, n = 9). Blood samples were collected at 6, 24, 72 and 168 h post-injury. The osteogenic potential was determined by measuring the in vitro proliferation rate of the human fetal osteoblastic cell line hFOB1.19, and primary human osteoblasts. Additionally, serum induced osteoblastic differentiation was assessed by measuring the mRNA expression of specific osteoblastic markers, including alkaline phosphatase, runt-related transcription factor 2, cathepsin K and serine protease 7. Results:, The sera of group I induced a higher mean proliferation rate of primary human osteoblasts at all time points of sampling than group III (P < 0.05). Group I had a higher mean proliferation rate of hFOB1.19 cells than all other groups at 6, 24 and 72 h post-injury (P < 0.05). The expression of alkaline phosphatase, cathepsin K and runt-related transcription factor 2 mRNA was increased in group I compared with group III and serine protease 7 was exclusively expressed in group I. Conclusion:, The study results strongly support a humoral mechanism in enhanced fracture healing and the induction of HO after TBI. Increased proliferation of osteoblastic cells and an accelerated differentiation of osteoprogenitor cells may be responsible for increased osteogenesis in TBI. [source]


Oncostatin M,induced CCL2 transcription in osteoblastic cells is mediated by multiple levels of STAT-1 and STAT-3 signaling: An implication for the pathogenesis of arthritis

ARTHRITIS & RHEUMATISM, Issue 5 2009
Sang-Heng Kok
Objective To examine the roles of STATs 1 and 3 in CCL2 production in human osteoblastic cells and their influences on arthritis development. Methods The expression of CCL2 in primary human osteoblasts and U2OS human osteoblastic cells was examined by Northern blotting and enzyme-linked immunosorbent assay. The roles of STAT-1/3 and c-Fos were assessed using short hairpin RNAs (shRNA) to silence their functions. Serine phosphorylation of STATs was assessed by Western blotting. Promoter activities of c-Fos and CCL2 were assessed by chloramphenicol acetyltransferase and luciferase assays, respectively. Interactions of STAT-1, STAT-3, and c-Fos with DNA were evaluated by electrophoretic mobility shift assay (EMSA) and immunoprecipitation. The effect of the JAK inhibitor AG-490 on collagen-induced arthritis (CIA) in rats was examined using immunohistochemistry. Results Oncostatin M (OSM) stimulated CCL2 expression in primary human osteoblasts and U2OS cells. In U2OS cells, STAT-1 and STAT-3 were involved in OSM-stimulated CCL2 expression, and both the phosphatidylinositol 3-kinase/Akt and MEK/ERK pathways were implicated in the activation of these STATs. STAT-1 and STAT-3 modulated the expression of c-Fos and directly transactivated the CCL2 promoter. Moreover, EMSA showed formation of a DNA,protein complex containing STAT-1, STAT-3, and interestingly, c-Fos. Immunoprecipitation confirmed the binding between c-Fos and STAT-1/3. Reporter assay revealed synergistic attenuation of CCL2 promoter activity by shRNA targeting of STAT-1, STAT-3, and c-Fos. AG-490 suppressed OSM-stimulated activation of STAT-1/3 and synthesis of CCL2 in vitro and diminished the severity of CIA and the number of CCL2-synthesizing osteoblasts in vivo. Conclusion These findings show that multiple levels of STAT-1/3 signaling modulate OSM-stimulated CCL2 expression in human osteoblastic cells. Clinically, this pathway may be related to the pathogenesis of arthritis. [source]


Epigallocatechin-3-gallate diminishes CCL2 expression in human osteoblastic cells via up-regulation of phosphatidylinositol 3-Kinase/Akt/Raf-1 interaction: A potential therapeutic benefit for arthritis

ARTHRITIS & RHEUMATISM, Issue 10 2008
Sze-Kwan Lin
Objective To assess the effects of epigallocatechin-3-gallate (EGCG) on oncostatin M (OSM),induced CCL2 synthesis and the associated signaling pathways in human osteoblastic cells. The therapeutic effect of EGCG on collagen-induced arthritis (CIA) in rats was also studied. Methods CCL2 and c-Fos messenger RNA expression was analyzed by Northern blotting. The modulating effects of EGCG on the activation of Raf-1, Akt, and phosphatidylinositol 3-kinase (PI 3-kinase) were examined by coimmunoprecipitation, Western blotting, and PI 3-kinase activity assay. Interactions between c-Fos and CCL2 promoter were evaluated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. The effect of EGCG on CIA in rats was examined clinically and immunohistochemically. Results EGCG inhibited OSM-stimulated CCL2 expression in primary human osteoblasts and MG-63 cells. In MG-63 cells, EGCG alleviated the OSM-induced phosphorylation of Raf-1 at Ser338 but restored the dephosphorylation of Raf-1 at Ser259. EGCG increased the activity of PI 3-kinase, the level of phosphorylated Akt (Ser473), and binding between Raf-1 and active Akt. EMSA and ChIP assay revealed that EGCG attenuated activator protein 1 (AP-1),CCL2 promoter interaction, possibly by reducing c-Fos synthesis. Codistribution of CD68+ macrophages and CCL2+ osteoblasts in osteolytic areas was obvious in the CIA model. Administration of EGCG markedly diminished the severity of CIA, macrophage infiltration, and the amount of CCL2-synthesizing osteoblasts. Conclusion By stimulating PI 3-kinase activity, EGCG promoted Akt/Raf-1 crosstalk, resulting in decreased AP-1 binding to CCL2 promoter, and finally reduced CCL2 production in osteoblasts. EGCG alleviated the severity of CIA, probably by suppressing CCL2 synthesis in osteoblasts to diminish macrophage infiltration. Our data support the therapeutic potential of EGCG on arthritis. [source]