Home About us Contact | |||
Primary Human (primary + human)
Terms modified by Primary Human Selected AbstractsSIGIRR/TIR-8 is an inhibitor of toll-like receptor signaling in primary human cells and regulates inflammation in models of rheumatoid arthritisARTHRITIS & RHEUMATISM, Issue 8 2010Stefan K. Drexler Objective Single-immunoglobulin interleukin-1 receptor,related (SIGIRR), which is also known as Toll/interleukin-1 receptor 8 (TIR-8), is a member of the TIR domain,containing family of receptors and was first characterized as an inhibitor of interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR) signaling. In the Dextran sulfate sodium,induced colitis model, SIGIRR,/, mice were shown to have increased inflammation and to be more susceptible to endotoxin challenge. Increasing evidence implicates TLR and IL-1R signaling in the pathology of rheumatoid arthritis (RA). Therefore, the purpose of this study was to investigate the involvement of SIGIRR in regulating inflammation in disease-relevant models. Methods Primary human monocyte-derived macrophages and dendritic cells (DCs) were used to overexpress SIGIRR as well as to knock down endogenously expressed SIGIRR using small interfering RNAs. SIGIRR was also overexpressed in synovial cells derived from RA patients. To investigate the role of SIGIRR in vivo, zymosan-induced arthritis (ZIA) and collagen antibody,induced arthritis (CAIA) were induced in SIGIRR-knockout mice. Results SIGIRR overexpression inhibited TLR-induced cytokine production in macrophages and DCs, while SIGIRR knockdown resulted in increased cytokine production following TLR stimulation. Moreover, SIGIRR overexpression inhibited the spontaneous release of cytokines by human RA synovial cells. The role of SIGIRR as an inhibitor of inflammation was confirmed in vivo, since SIGIRR,/, mice developed a more severe disease in both the ZIA and CAIA models. Conclusion Our study is the first to show the expression pattern and function of SIGIRR in primary human cells. Furthermore, this investigation defines the role of SIGIRR in disease-relevant cell types and demonstrates that SIGIRR is a potential therapeutic target for RA. [source] Synovial fibroblasts self-direct multicellular lining architecture and synthetic function in three-dimensional organ cultureARTHRITIS & RHEUMATISM, Issue 3 2010Hans P. Kiener Objective To define the intrinsic capacity of fibroblast-like synoviocytes (FLS) to establish a 3-dimensional (3-D) complex synovial lining architecture characterized by the multicellular organization of the compacted synovial lining and the elaboration of synovial fluid constituents. Methods FLS were cultured in spherical extracellular matrix (ECM) micromasses for 3 weeks. The FLS micromass architecture was assessed histologically and compared with that of dermal fibroblast controls. Lubricin synthesis was measured via immunodetection. Basement membrane matrix and reticular fiber stains were performed to examine ECM organization. Primary human and mouse monocytes were prepared and cocultured with FLS in micromass to investigate cocompaction in the lining architecture. Cytokine stimuli were applied to determine the capacity for inflammatory architecture rearrangement. Results FLS, but not dermal fibroblasts, spontaneously formed a compacted lining architecture over 3 weeks in the 3-D ECM micromass organ cultures. These lining cells produced lubricin. FLS rearranged their surrounding ECM into a complex architecture resembling the synovial lining and supported the survival and cocompaction of monocyte/macrophages in the neo,lining structure. Furthermore, when stimulated by cytokines, FLS lining structures displayed features of the hyperplastic rheumatoid arthritis synovial lining. Conclusion This 3-D micromass organ culture method demonstrates that many of the phenotypic characteristics of the normal and the hyperplastic synovial lining in vivo are intrinsic functions of FLS. Moreover, FLS promote survival and cocompaction of primary monocytes in a manner remarkably similar to that of synovial lining macrophages. These findings provide new insight into inherent functions of the FLS lineage and establish a powerful in vitro method for further investigation of this lineage. [source] Glycation of low-density lipoprotein results in the time-dependent accumulation of cholesteryl esters and apolipoprotein B-100 protein in primary human monocyte-derived macrophagesFEBS JOURNAL, Issue 6 2007Bronwyn E. Brown Nonenzymatic covalent binding (glycation) of reactive aldehydes (from glucose or metabolic processes) to low-density lipoproteins has been previously shown to result in lipid accumulation in a murine macrophage cell line. The formation of such lipid-laden cells is a hallmark of atherosclerosis. In this study, we characterize lipid accumulation in primary human monocyte-derived macrophages, which are cells of immediate relevance to human atherosclerosis, on exposure to low-density lipoprotein glycated using methylglyoxal or glycolaldehyde. The time course of cellular uptake of low-density lipoprotein-derived lipids and protein has been characterized, together with the subsequent turnover of the modified apolipoprotein B-100 (apoB) protein. Cholesterol and cholesteryl ester accumulation occurs within 24 h of exposure to glycated low-density lipoprotein, and increases in a time-dependent manner. Higher cellular cholesteryl ester levels were detected with glycolaldehyde-modified low-density lipoprotein than with methylglyoxal-modified low-density lipoprotein. Uptake was significantly decreased by fucoidin (an inhibitor of scavenger receptor SR-A) and a mAb to CD36. Human monocyte-derived macrophages endocytosed and degraded significantly more 125I-labeled apoB from glycolaldehyde-modified than from methylglyoxal-modified, or control, low-density lipoprotein. Differences in the endocytic and degradation rates resulted in net intracellular accumulation of modified apoB from glycolaldehyde-modified low-density lipoprotein. Accumulation of lipid therefore parallels increased endocytosis and, to a lesser extent, degradation of apoB in human macrophages exposed to glycolaldehyde-modified low-density lipoprotein. This accumulation of cholesteryl esters and modified protein from glycated low-density lipoprotein may contribute to cellular dysfunction and the increased atherosclerosis observed in people with diabetes, and other pathologies linked to exposure to reactive carbonyls. [source] Mite serine protease activates protease-activated receptor-2 and induces cytokine release in human keratinocytesALLERGY, Issue 9 2009T. Kato Background:, House dust mites produce serine and cysteine proteases. Mite-derived proteases have been suggested to be involved in the pathogenesis of allergies; however, whether mite-derived serine protease activity can stimulate keratinocytes remains unknown. Methods:, We examined the activation of primary human keratinocytes by serine protease-rich extract of whole mite culture and compared with that by recombinant group 1 allergens (rDer f 1 and rDer p 1), which exclusively exhibit cysteine protease activity. Results:, Protease activity of whole mite culture extract (WCE), rDer f 1 and rDer p 1 induced the release of IL-8 and granulocyte-macrophage colony-stimulating factor. Protease activity of WCEs induced a significant upregulation of their mRNA expression but rDer f 1 had much less effect. Protease activity of the WCE stimulated intracellular Ca2+ mobilization but rDer f 1 and rDer p 1 did not. The mobilization induced by agonists for the human protease-activated receptor (PAR)-2, an agonist peptide or trypsin, was diminished by pre-incubation of keratinocytes with WCE. rDer f 1 inefficiently cleaved a synthetic N-terminal peptide of PAR-2 at different sites from trypsin, but the resultant peptides did not stimulate the release of interleukin-8. Conclusions:, The results suggest that mite-derived serine protease activity may contribute to the pathogenesis of atopic dermatitis by activating keratinocytes via PAR-2 activation but cysteine protease activity of Der f 1 and Der p 1 acts via another mechanism. [source] Differential modulation of innate immune cell functions by the Burkholderia cepacia complex: Burkholderia cenocepacia but not Burkholderia multivorans disrupts maturation and induces necrosis in human dendritic cellsCELLULAR MICROBIOLOGY, Issue 10 2008Kelly L. MacDonald Summary Burkholderia cepacia complex (BCC) bacteria cause pulmonary infections that can evolve into fatal overwhelming septicemia in chronic granulomatous disease or cystic fibrosis patients. Burkholderia cenocepacia and Burkholderia multivorans are responsible for the majority of BCC infections in cystic fibrosis patients, but B. cenocepacia is generally associated with a poorer prognosis than B. multivorans. The present study investigated whether these pathogens could modulate the normal functions of primary human monocyte-derived dendritic cells (DCs), important phagocytic cells that act as critical orchestrators of the immune response. Effects of the bacteria on maturation of DCs were determined using flow cytometry. DCs co-incubated for 24 h with B. cenocepacia, but not B. multivorans, had reduced expression of costimulatory molecules when compared with standard BCC lipopolysaccharide-matured DCs. B. cenocepacia, but not B. multivorans, also induced necrosis in DCs after 24 h, as determined by annexin V and propidium iodide staining. DC necrosis only occurred after phagocytosis of live B. cenocepacia; DCs exposed to heat-killed bacteria, bacterial supernatant or those pre-treated with cytochalasin D then exposed to live bacteria remained viable. The ability of B. cenocepacia to interfere with normal DC maturation and induce necrosis may contribute to its pathogenicity in susceptible hosts. [source] |