Home About us Contact | |||
Primary Cortical Cultures (primary + cortical_culture)
Selected AbstractsA novel effect of rivastigmine on pre-synaptic proteins and neuronal viability in a neurodegeneration model of fetal rat primary cortical cultures and its implication in Alzheimer's diseaseJOURNAL OF NEUROCHEMISTRY, Issue 4 2010Jason A. Bailey J. Neurochem. (2010) 112, 843,853. Abstract Alzheimer's disease (AD) is characterized by deposition of amyloid-, peptide plaque, disrupted amyloid-,-precursor protein (APP) metabolism, hyperphosphorylation of Tau leading to neurofibrillary tangles and associated neurotoxicity. Moreover, there is synaptic loss in AD, which occurs early and may precede frank amyloidosis. The central cholinergic system is especially vulnerable to the toxic events associated with AD, and reduced acetylcholine levels in specific brain regions is thought to be central to memory deficits in AD. First-generation cholinesterase inhibitors have provided only symptomatic relief to patients with AD by prolonging the action of remaining acetylcholine with little or no change in the course of the disease. Some second-generation cholinesterase inhibitors are multifunctional drugs that may provide more than purely palliative results. To evaluate the effects of the dual acetylcholinesterase and butyrylcholinesterase inhibitor rivastigmine on key aspects of AD, embryonic day 16 rat primary cortical cultures were treated with rivastigmine under media conditions observed to induce time-dependent neurodegeneration. Samples were subjected to western blotting and immunocytochemistry techniques to determine what influence this drug may have on synaptic proteins and neuronal morphology. There was a strong increase in relative cell viability associated with rivastigmine treatment. Significant dose-dependent increases were observed in the levels of synaptic markers synaptosomal-associated protein of 25 kDa (SNAP-25) and synaptophysin, as well as the neuron-specific form of enolase. Together with an observed enhancement of neuronal morphology, our results suggest a rivastigmine-mediated novel neuroprotective and/or neurorestorative effects involving the synapse. Our observations may explain the potential for rivastigmine to alter the course of AD, and warrant further investigations into using butyrylcholinesterase inhibition as a therapeutic strategy for AD, especially with regard to restoration of synaptic function. [source] Acute Ethanol Inhibits Extracellular Signal,Regulated Kinase, Protein Kinase B, and Adenosine 3,:5,-Cyclic Monophosphate Response Element Binding Protein Activity in an Age- and Brain Region,Specific MannerALCOHOLISM, Issue 4 2005L Judson Chandler Background: As little as a single episode of exposure of the developing brain to ethanol can result in developmental neuropathology and mental retardation. Extracellular signal,regulated kinases (ERKs), protein kinase B (PKB), and adenosine 3,:5,-cyclic monophosphate response element binding protein (CREB) are messenger molecules that play important roles in neuronal plasticity and survival. This study was undertaken to examine the effects of acute ethanol on ERK, PKB, and CREB activation in the brain. Methods: Immunoblot analysis was used to determine the effects of a 1-hr exposure of ethanol on levels of phospho-ERC in primary cortical cultures and in the cerebral cortex, hippocampus, and cerebellum of postnatal day 5 (PN5), postnatal day 21 (PN21), and adult rats. Results: In cortical cultures, ethanol (100 mM) significantly reduced activity-dependent activation of phospho-ERK, phospho-PKB, and phospho-CREB by approximately 50%. In PN5 rats, ethanol (3.5 g/kg) inhibited both phospho-ERK and phospho-PKB in the cerebral cortex and hippocampus but was without effect in the cerebellum. A similar brain region,specific inhibition of phospho-ERK was observed in PN21 rats, whereas in adult rats, ethanol inhibited phospho-ERK in all three brain regions. In contrast, ethanol had no effect on phospho-PKB in either PN21 or adult rats. Without exception, ethanol inhibited phospho-CREB in an identical brain region, and age-dependent manner as was observed for phospho-ERK. Finally, administration of the NMDA antagonist MK-801 (0.5 mg/kg) to PN5 rats had no effect on phospho-ERK or phospho-PKB levels in any brain region. Conclusion: The results demonstrate that acute ethanol inhibits ERK/PKB/CREB signaling in brain. This inhibition occurs in an age- and brain region,specific manner, with inhibition of PKB restricted to a time during the brain growth-spurt period. Furthermore, the lack of effect of MK-801 suggests that inhibition of NMDA receptors is unlikely to play a major role in binge ethanol inhibition of ERK/PKB/CREB signaling in vivo. [source] Neuroprotective effect of luteolin on amyloid , protein (25,35)-induced toxicity in cultured rat cortical neuronsPHYTOTHERAPY RESEARCH, Issue S1 2010Hao-Yuan Cheng Abstract The present study was carried out to investigate the neuroprotective effect of luteolin on amyloid , (A,) (25,35)-induced neurotoxicity using cultured rat cortical neurons. After exposure of primary cultures of rat cortical cells to 10 ,M A, (25,35) for 48 h, cortical cell cultures exhibited marked apoptotic death. Pretreatment with luteolin (1, 10 ,M) significantly protected cortical cell cultures against A, (25,35)-induced toxicity. Luteolin (1, 10 ,M) showed a concentration-dependent inhibition on 10 ,M A, (25,35)-induced apoptotic neuronal death, as assessed by MTT assay. Furthermore, luteolin reduced apoptotic characteristics by DAPI staining. For Western blot analysis, the results showed that the protective effect of luteolin on A, (25,35)-induced neurotoxicity was mediated by preventing of ERK-p, JNK, JNK-p, P38-p and caspase 3 activations in rat primary cortical cultures. Taken together, the results suggest that luteolin prevents A, (25,35)-induced apoptotic neuronal death through inhibiting the protein level of JNK, ERK and p38 MAP kinases and caspase 3 activations. Copyright © 2009 John Wiley & Sons, Ltd. [source] |