Primary Chondrocytes (primary + chondrocyte)

Distribution by Scientific Domains


Selected Abstracts


Smad3-Deficient Chondrocytes Have Enhanced BMP Signaling and Accelerated Differentiation,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2006
Tian-Fang Li
Abstract Smad3 deficiency accelerates chondrocyte maturation and leads to osteoarthritis. Primary chondrocytes without Smad3 lack compensatory increases of TGF-, signaling factors, but BMP-related gene expression is increased. Smad2 or Smad3 overexpression and BMP blockade abrogate accelerated maturation in Smad3,/, chondrocytes. BMP signaling is increased in TGF-, deficiency and is required for accelerated chondrocyte maturation. Introduction: Disruption of TGF-, signaling results in accelerated chondrocyte maturation and leads to postnatal dwarfism and premature osteoarthritis. The mechanisms involved in this process were studied using in vitro murine chondrocyte cultures. Materials and Methods: Primary chondrocytes were isolated from the sterna of neonatal wildtype and Smad3,/, mice. Expressions of maturational markers, as well as genes involved in TGF-, and BMP signaling were examined. Chondrocytes were treated with TGF-, and BMP-2, and effects on maturation-related genes and BMP/TGF-, responsive reporters were examined. Recombinant noggin or retroviral vectors expressing Smad2 or Smad3 were added to the cultures. Results: Expression of colX and other maturational markers was markedly increased in Smad3,/, chondrocytes. Smad3,/, chondrocytes lacked compensatory increases in Smad2, Smad4, TGFRII, Sno, or Smurf2 and had reduced expression of TGF - ,1 and TGFRI. In contrast, Smad1, Smad5, BMP2, and BMP6 expression was increased, suggesting a shift from TGF-, toward BMP signaling. In Smad3,/, chondrocytes, alternative TGF-, signaling pathways remained responsive, as shown by luciferase assays. These non-Smad3-dependent TGF-, pathways reduced colX expression and alkaline phosphatase activity in TGF-,-treated Smad3,/, cultures, but only partially. In contrast, Smad3,/, chondrocytes were more responsive to BMP-2 treatment and had increased colX expression, phosphoSmads 1, 5, and 8 levels, and luciferase reporter activity. Overexpression of both Smad2 and Smad3 blocked spontaneous maturation in Smad3-deficient chondrocytes. Maturation was also abrogated by the addition of noggin, an extracellular BMP inhibitor. Conclusions: These findings show a key role for BMP signaling during the chondrocyte maturation, occurring with loss of TGF-, signaling with important implications for osteoarthritis and cartilage diseases. [source]


Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen,induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

ARTHRITIS & RHEUMATISM, Issue 12 2009
K. Blumbach
Objective Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril,associated proteins type IX collagen and cartilage oligomeric matrix protein (COMP) during cartilage matrix formation. Methods Primary chondrocytes from mice deficient in type IX collagen and COMP (double-deficient) were cultured in monolayer or alginate beads. Anchorage of matrix proteins, proteoglycan and collagen content, collagen crosslinks, matrix metalloproteinase activity, and mechanical properties of the matrix were measured. Electron microscopy was used to study the formation of fibrillar structures. Results In cartilage lacking both type IX collagen and COMP, matrilin 3 showed decreased matrix anchorage. Less matrilin 3 was deposited in the matrix of double-deficient chondrocytes, while larger amounts were secreted into the medium. Proteoglycans were less well retained in the matrix formed in alginate cultures, while collagen deposition was not significantly affected. Electron microscopy revealed similar cartilage collagen fibril diameters in the cultures of double-deficient and wild-type chondrocytes. In contrast, a larger fibril diameter was observed in the matrix of chondrocytes deficient in only type IX collagen. Conclusion Our results show that type IX collagen and COMP are involved in matrix assembly by mediating the anchorage and regulating the distribution of other matrix macromolecules such as proteoglycans and matrilins and have counteracting effects on collagen fibril growth. Loss of type IX collagen and COMP leads to matrix aberrations that may make cartilage more susceptible to degeneration. [source]


Structure and promoter analysis of the mouse membrane-bound transferrin-like protein (MTf) gene

FEBS JOURNAL, Issue 5 2001
Kazuko Nakamasu
Recently, we purified membrane-bound transferrin-like protein (MTf) from the plasma membrane of rabbit chondrocytes and showed that the expression levels of MTf protein and mRNA were much higher in cartilage than in other tissues [Kawamoto T, Pan, H., Yan, W., Ishida, H., Usui, E., Oda, R., Nakamasu, K., Noshiro, M., Kawashima-Ohya, Y., Fujii, M., Shintani, H., Okada, Y. & Kato, Y. (1998) Eur. J. Biochem.256, 503,509]. In this study, we isolated the MTf gene from a constructed mouse genomic library. The mouse MTf gene was encoded by a single-copy gene spanning ,,26 kb and consisting of 16 exons. The transcription-initiation site was located 157 bp upstream from the translation-start codon, and a TATA box was not found in the 5, flanking region. The mouse MTf gene was mapped on the B3 band of chromosome 16 by fluorescence in situ hybridization. Using primary chondrocytes, SK-MEL-28 (melanoma cell line), ATDC5 (chondrogenic cell line) and NIH3T3 (fibroblast cell line) cells, we carried out transient expression studies on various lengths of the 5, flanking region of the MTf gene fused to the luciferase reporter gene. Luciferase activity in SK-MEL-28 cells was higher than in primary chondrocytes. Although no luciferase activity was detectable in NIH3T3 cells, it was higher in chondrocytes than in ATDC5 chondrogenic cells. These findings were consistent with the levels of expression of MTf mRNA in these cells cultured under similar conditions. The patterns of increase and decrease in the luciferase activity in chondrocytes transfected with various 5, deleted constructs of the MTf promoter were similar to that in ATDC5 cells, but differed from that in SK-MEL-28 cells. The findings obtained with primary chondrocytes suggest that the regions between ,693 and ,444 and between ,1635 and ,1213 contain positive and negative cis -acting elements, respectively. The chondrocyte-specific expression of the MTf gene could be regulated via these regulatory elements in the promoter region. [source]


Association of a single nucleotide polymorphism in the steroid and xenobiotic receptor (SXR) gene (IVS1-579A/G) with bone mineral density

GERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 2 2007
Tomohiko Urano
Vitamin K2 plays an important role in the bone metabolism. The steroid and xenobiotic receptor (SXR) as a nuclear receptor activated by vitamin K2 as well as rifampicin could increase bone markers such as alkaline phosphatase in human osteoblastic cells. Thus, the SXR could mediate vitamin K2 signaling pathway in bone cells. Therefore, we analyzed expression of the SXR mRNA in human primary osteoblasts and chondrocytes. We also studied association of a single nucleotide polymorphism (SNP) in the SXR gene with bone mineral density (BMD). Expression levels of the SXR mRNA were analyzed during the culture course of human primary osteoblasts and chondrocytes. Association of a SNP in the SXR gene in intron 1 (IVS1-579A>G) with BMD was examined in 294 healthy postmenopausal Japanese women. The SXR mRNA increased at day 5 and then decreased at day 10 in human primary osteoblasts. Its mRNA gradually increased in human primary chondrocytes until day 10. As an association study of a SNP in the SXR gene (IVS1-579A/G), the subjects without the A allele (GG; n = 47) had significantly higher total BMD than the subjects bearing at least one A allele (AA + AG; n = 247) (Z score ± SD; 0.635 ± 1.031 versus 0.268 ± 1.061; P = 0.0298). The SXR mRNA was expressed and regulated in primary human osteoblasts and chondrocytes. A genetic variation at the SXR gene locus is associated with BMD, suggesting an involvement of the SXR gene in human bone metabolism. [source]


Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2001
Ivan Martin
Abstract Bovine calf articular chondrocytes, either primary or expanded in monolayers (2D) with or without 5 ng/ml fibroblast growth factor-2 (FGF-2), were cultured on three-dimensional (3D) biodegradable polyglycolic acid (PGA) scaffolds with or without 10 ng/ml bone morphogenetic protein-2 (BMP-2). Chondrocytes expanded without FGF-2 exhibited high intensity immunostaining for smooth muscle ,-actin (SMA) and collagen type I and induced shrinkage of the PGA scaffold, thus resembling contractile fibroblasts. Chondrocytes expanded in the presence of FGF-2 and cultured 6 weeks on PGA scaffolds yielded engineered cartilage with 3.7-fold higher cell number, 4.2-fold higher wet weight, and 2.8-fold higher wet weight glycosaminoglycan (GAG) fraction than chondrocytes expanded without FGF-2. Chondrocytes expanded with FGF-2 and cultured on PGA scaffolds in the presence of BMP-2 for 6 weeks yielded engineered cartilage with similar cellularity and size, 1.5-fold higher wet weight GAG fraction, and more homogenous GAG distribution than the corresponding engineered cartilage cultured without BMP-2. The presence of BMP-2 during 3D culture had no apparent effect on primary chondrocytes or those expanded without FGF-2. In summary, the presence of FGF-2 during 2D expansion reduced chondrocyte expression of fibroblastic molecules and induced responsiveness to BMP-2 during 3D cultivation on PGA scaffolds. © 2001 Wiley-Liss, Inc. [source]


Immortalized cell lines from mouse xiphisternum preserve chondrocyte phenotype

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006
Manas K. Majumdar
Chondrocytes are unique to cartilage and the study of these cells in vitro is important for advancing our understanding of the role of these cells in normal homeostasis and disease including osteoarthritis (OA). As there are limitations to the culture of primary chondrocytes, cell lines have been developed to overcome some of these obstacles. In this study, we developed a procedure to immortalize and characterize chondrocyte cell lines from mouse xiphisternum. The cells displayed a polygonal to fibroblastic morphology in monolayer culture. Gene expression studies using quantitative PCR showed that the cell lines responded to bone morphogenetic protein 2 (BMP-2) by increased expression of matrix molecules, aggrecan, and type II collagen together with transcriptional factor, Sox9. Stimulation by IL-1 results in the increased expression of catabolic effectors including MMP-13, nitric oxide synthase, ADAMTS4, and ADAMTS5. Cells cultured in alginate responded to BMP-2 by increased synthesis of proteoglycan (PG), a major matrix molecule of cartilage. IL-1 treatment of cells in alginate results in increased release of PG into the conditioned media. Further analysis of the media showed the presence of Aggrecanase-cleaved aggrecan fragments, a signature of matrix degradation. These results show that the xiphisternum chondrocyte cell lines preserve their chondrocyte phenotype cultured in either monolayer or 3-dimensional alginate bead culture systems. In summary, this study describes the establishment of chondrocyte cell lines from the mouse xiphisternum that may be useful as a surrogate model system to understand chondrocyte biology and to shed light on the underlying mechanism of pathogenesis in OA. J. Cell. Physiol. 209: 551,559, 2006. © 2006 Wiley-Liss, Inc. [source]


Immunophenotypic analysis of human articular chondrocytes: Changes in surface markers associated with cell expansion in monolayer culture

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
Jose Diaz-Romero
Cartilage tissue engineering relies on in vitro expansion of primary chondrocytes. Monolayer is the chosen culture model for chondrocyte expansion because in this system the proliferative capacity of chondrocytes is substantially higher compared to non-adherent systems. However, human articular chondrocytes (HACs) cultured as monolayers undergo changes in phenotype and gene expression known as "dedifferentiation." To gain a better understanding of the cellular mechanisms involved in the dedifferentiation process, our research focused on the characterization of the surface molecule phenotype of HACs in monolayer culture. Adult HACs were isolated by enzymatic digestion of cartilage samples obtained post-mortem. HACs cultured in monolayer for different time periods were analyzed by flow cytometry for the expression of cell surface markers with a panel of 52 antibodies. Our results show that HACs express surface molecules belonging to different categories: integrins and other adhesion molecules (CD49a, CD49b, CD49c, CD49e, CD49f, CD51/61, CD54, CD106, CD166, CD58, CD44), tetraspanins (CD9, CD63, CD81, CD82, CD151), receptors (CD105, CD119, CD130, CD140a, CD221, CD95, CD120a, CD71, CD14), ectoenzymes (CD10, CD26), and other surface molecules (CD90, CD99). Moreover, differential expression of certain markers in monolayer culture was identified. Up-regulation of markers on HACs regarded as distinctive for mesenchymal stem cells (CD10, CD90, CD105, CD166) during monolayer culture suggested that dedifferentiation leads to reversion to a primitive phenotype. This study contributes to the definition of HAC phenotype, and provides new potential markers to characterize chondrocyte differentiation stage in the context of tissue engineering applications. © 2004 Wiley-Liss, Inc. [source]


Control of human articular chondrocyte differentiation by reduced oxygen tension

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004
Christopher L. Murphy
Cell number is often a limiting factor in studies of chondrocyte physiology, particularly for human investigations. Chondrocytes can be readily proliferated in monolayer culture, however, differentiated phenotype is soon lost. We therefore endeavored to restore normal phenotype to human chondrocytes after serial passage in monolayer culture by manipulating cell morphology and oxygen tension towards the in vivo state. Third passage cells were encapsulated in alginate and exposed to either 20% or more physiologic 5% oxygen tensions. To assess cell phenotype, gene expression was measured using TaqMan real-time PCR. Encapsulated, primary chondrocytes cultured in 20% oxygen were used as a positive reference. Passaged human chondrocytes were fibroblastic in appearance and had lost normal phenotype as evidenced by a decrease in expression of collagen II, aggrecan, and sox9 genes of 66, 6, and 14 fold, respectively; with concomitant high expression of type I collagen (22 fold increase). A partial regaining of the differentiated phenotype was observed by encapsulation in 20% oxygen; however, even after 4 weeks, collagen II gene expression was not fully restored. Collagen II and aggrecan expression were increased, on average, 3 fold, in 5% oxygen tension compared to 20% cultures. Furthermore, matrix glycosaminoglycan (GAG) levels were significantly increased in reduced oxygen. In fact, after 4 weeks in 5% oxygen, encapsulated third passage cells had collagen II expression fully regained and aggrecan and sox9 levels actually exceeding primary cell levels in 20% oxygen. Our results show that the phenotype of serially passaged human articular chondrocytes is more fully restored by combining encapsulation with culture in more physiological levels of oxygen. Sox9, an essential transcription factor for chondrocyte differentiation is strongly implicated in this process since its expression was upregulated almost 27 fold. These findings have implications for the optimal conditions for the in vitro culture of chondrocytes. © 2004 Wiley-Liss, Inc. [source]


2-methoxyestradiol induces apoptosis and cell cycle arrest in human chondrosarcoma cells

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 8 2007
Yi-Chin Fong
Abstract 2-Methoxyestradiol (2ME) is an endogenous metabolite with estrogen receptor-independent anti-tumor activity. The current study seeks to determine the mechanism of anti-tumor activity of 2ME on human chondrosarcoma. 2ME caused a time- and dose-dependent cytotoxity in chondrosarcoma cells, while primary chondrocytes were minimally affected. Cells accumulated in G0/G1 phase in response to 2ME and DAPI stain indicated an induction of apoptosis. Bax, Cytochrome C, and Caspase-3 protein expression were increased, while p53 expression was decreased. A higher Bax/Bcl-2 ratio followed 2ME treatment. 2ME has a potentially promising role as a systemic therapy of chondrosarcoma when the mechanism of action is better delineated. Published by Wiley Periodicals, Inc. J Orthop Res 25:1106,1114, 2007 [source]


Endothelial nitric oxide synthase deficiency in mice results in reduced chondrocyte proliferation and endochondral bone growth

ARTHRITIS & RHEUMATISM, Issue 7 2010
Qian Yan
Objective Nitric oxide (NO) and aberrant chondrocyte differentiation have both been implicated in the pathogenesis of osteoarthritis, but whether these processes are connected is unknown, and the role of specific NO synthase (NOS) enzymes in chondrocyte physiology is unclear. This study was undertaken to examine the effects of inactivation of endothelial cell NOS (eNOS) on cartilage development in mice. Methods Skeletal growth and development of mice carrying a null mutation in the eNOS gene was compared with that of their control littermates. In situ analyses were complemented by experiments with primary chondrocytes and tibial explants from these mice. Results Mice that were deficient in eNOS showed increased fatality and reduced bone growth, with hypocellular growth plates and a marked reduction in the number of proliferating chondrocytes. In vitro studies demonstrated lower chondrocyte numbers and reduced endochondral bone growth in mutant mice, suggesting that the role of eNOS signaling in chondrocyte proliferation is cell autonomous. Reduced chondrocyte numbers appear to be caused by decreased cyclin D1 and increased p57 expression in mutant mice, resulting in slower cell cycle progression and earlier cell cycle exit. In addition, expression of early chondrocyte markers such as SOX9 was reduced, and prehypertrophic markers were expressed prematurely in mutant mice. Conclusion Our findings identify a novel and important role of eNOS in chondrocyte proliferation and endochondral bone growth and demonstrate that loss of eNOS results in premature cell cycle exit and prehypertrophic chondrocyte differentiation during cartilage development. [source]


Induction of CD44 cleavage in articular chondrocytes

ARTHRITIS & RHEUMATISM, Issue 5 2010
Nobunori Takahashi
Objective The hyaluronan receptor CD44 provides chondrocytes with a mechanism for sensing and responding to changes in the extracellular matrix. The purpose of this study was to document the fragmentation and loss of CD44 and to determine the likely mechanisms involved. Methods A polyclonal anti-CD44 cytotail antibody was generated to detect CD44 fragmentation by Western blot analysis. Chondrocytes were isolated from human or bovine articular cartilage. Primary articular chondrocytes were treated with interleukin-1, (IL-1,), hyaluronan oligosaccharides, or phorbol myristate acetate or were passaged and subcultured in monolayer to induce dedifferentiation. Conditions that altered the capacity of CD44 to transit into lipid rafts, or pharmacologic inhibitors of metalloproteinase or ,-secretase activity were used to define the mechanism of fragmentation of CD44. Results Chondrocytes from osteoarthritic cartilage exhibited CD44 fragmentation as low molecular mass bands, corresponding to the CD44-EXT and CD44-ICD bands. Following dedifferentiation of chondrocytes or treatment of primary chondrocytes with hyaluronan oligosaccharides, IL-1,, or phorbol myristate acetate, CD44 fragmentation was enhanced. Subsequent culture of the dedifferentiated chondrocytes in 3-dimensional alginate beads rescued the chondrocyte phenotype and diminished the fragmentation of CD44. Fragmentation of CD44 in chondrocytes was blocked in the presence of the metalloproteinase inhibitor GM6001 and the ,-secretase inhibitor DAPT. Conclusion CD44 fragmentation, consistent with a signature pattern reported for sequential metalloproteinase/,-secretase cleavage of CD44, is a common metabolic feature of chondrocytes that have undergone dedifferentiation in vitro and osteoarthritic chondrocytes. Transit of CD44 into lipid rafts may be required for its fragmentation. [source]


Expression and modulation of ghrelin O -acyltransferase in cultured chondrocytes

ARTHRITIS & RHEUMATISM, Issue 6 2009
Rodolfo Gómez
Objective To use reverse transcription,polymerase chain reaction to detect ghrelin O -acyltransferase (GOAT) transcripts in both murine and human chondrocytes, to evaluate the effect of pharmacologic in vitro treatments with lipopolysaccharide (LPS), growth hormone, ghrelin, and dexamethasone on GOAT messenger RNA (mRNA) expression, and to study the GOAT mRNA profile during chondrocyte differentiation. Methods Murine and human GOAT and ghrelin mRNA levels were determined by the SYBR Green,based quantitative real-time polymerase chain reaction method. Results GOAT mRNA was expressed in murine cartilage explants as well as in the cultured murine chondrogenic ATDC-5 cell line. GOAT was also expressed in human immortalized chondrocyte cell lines and in human cultured primary chondrocytes. In addition, GOAT mRNA expression in differentiating ATDC-5 cells was lower at the early stage of differentiation (days 3,7), whereas GOAT mRNA levels increased progressively at the late stages. Finally, among the drugs and hormones tested, only LPS was able to strongly decrease GOAT mRNA expression. Conclusion These data indicate that chondrocytes are equipped with biochemical machinery for the synthesis of acylated ghrelin and suggest a novel role of the ghrelin axis in prehypertrophic and hypertrophic chondrocyte differentiation during endochondral ossification. [source]