Home About us Contact | |||
Primary Challenges (primary + challenge)
Selected AbstractsPre-exposure to infectious hypodermal and haematopoietic necrosis virus or to inactivated white spot syndrome virus (WSSV) confers protection against WSSV in Penaeus vannamei (Boone) post-larvaeJOURNAL OF FISH DISEASES, Issue 10 2006J Melena Abstract Larvae and post-larvae of Penaeus vannamei (Boone) were submitted to primary challenge with infectious hypodermal and haematopoietic necrosis virus (IHHNV) or formalin-inactivated white spot syndrome virus (WSSV). Survival rate and viral load were evaluated after secondary per os challenge with WSSV at post-larval stage 45 (PL45). Only shrimp treated with inactivated WSSV at PL35 or with IHHNV infection at nauplius 5, zoea 1 and PL22 were alive (4.7% and 4%, respectively) at 10 days post-infection (p.i.). Moreover, at 9 days p.i. there was 100% mortality in all remaining treatments, while there was 94% mortality in shrimp treated with inactivated WSSV at PL35 and 95% mortality in shrimp previously treated with IHHNV at N5, Z1 and PL22. Based on viral genome copy quantification by real-time PCR, surviving shrimp previously challenged with IHHNV at PL22 contained the lowest load of WSSV (0,1 × 103 copies ,g,1 of DNA). In addition, surviving shrimp previously exposed to inactivated WSSV at PL35 also contained few WSSV (0,2 × 103 copies ,g,1 of DNA). Consequently, pre-exposure to either IHHNV or inactivated WSSV resulted in slower WSSV replication and delayed mortality. This evidence suggests a protective role of IHHNV as an interfering virus, while protection obtained by inactivated WSSV might result from non-specific antiviral immune response. [source] Rhesus monkey model for Leishmania major transmitted by Phlebotomus papatasi sandfly bitesMEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2001R. J. Probst Summary Leishmaniasis research needs a near-human model for investigations of natural infection processes, immunological responses and evaluation of treatments. Therefore, we developed a reproducible system using Leishmania major Yakimoff & Schokhor (Trypanosomatidae: Kinetoplastida), the cause of Old World zoonotic cutaneous leishmaniasis (ZCL), transmitted to rhesus monkeys Macaca mulatta (Zimmerman) (Primates: Cercopithecidae) by sandfly bites of experimentally infected Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae). Eight monkeys of presumed Indian origin (Leishmania naïve) were exposed to bites of female sandflies that had been infected with L. major by membrane-feeding on human blood seeded with amastigotes isolated from hamster footpad lesions. Infection rates of membrane-fed sandflies averaged >,85% seven days after the infective feed, with uniformly high numbers of promastigotes in the stomodaeal valve region of the sandfly gut. Nodules and ulcerating dermal lesions developed on 7/8 monkeys 2,4 weeks post-bite and persisted for 3,7 months. Monkeys also developed satellite lesions beyond the area of sandfly bites on the head, but not on the chest. Three re-challenged monkeys developed lesions that healed faster than lesions from their primary challenges. After infection, monkeys developed delayed type hypersensitivity (DTH) responses to a panel of Leishmania skin test antigens (LSTA) and, when tested by ELISA and IFA, showed significant post-infection antibody titres which typically rose for ,170 days and then gradually receded during the next 100 days following the first challenge. After the second challenge, antibody titres spiked higher within ,50 days and receded more rapidly. In contrast, four rhesus macaques of Chinese origin developed no lesions following infected sandfly bites, although they raised antibodies and LSTA reactions, indicating subclinical infection. [source] Sequence, Structure and Energy Transfer in DNA,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2007Thomas M. Nordlund Excitation energy transfer in DNA has similarities to charge transfer, but the transport is of an excited state, not of mass or charge. Use of the fluorescent, modified adenine base 2-aminopurine (2AP) as an energy trap in short (3- to 20-base) single- and double-stranded DNA oligomers is reviewed. Variation of 2AP's neighboring sequence shows (1) relatively efficient transfer from adenine compared to that from cytosine and thymine, (2) efficient transfer from guanine, but only when 2AP is at the 3, end, (3) approximate equality of efficiencies for 3, to 5, and 5, to 3, directional transfer in adenine tracks. The overall, average transfer distance at room temperature is about four adenine bases or less before de-excitation. The transfer fluorescence excitation spectral shape is similar to that of the absorption spectrum of the neighboring normal bases, confirming that initial excitation of the normal bases, followed by emission from 2AP (i.e. energy transfer), is occurring. Transfer apparently may take place both along one strand and cross-strand, depending on the oligomer sequence. Efficiency increases when the temperature is decreased, rising above 50% (overall efficiency) in decamers of adenine below ,60°C (frozen media). Modeling of the efficiencies of transfer from the nearest several adenine neighbors of 2AP in these oligomers suggests that the nearest two neighbors transfer with near 100% efficiency. As bases in B DNA, as well as in single-stranded DNA, are separated by less than 5 Å (less than the size of a base), standard Förster transfer theory should not apply. Indeed, while both theory and experiment show efficiency decreasing with donor,acceptor distance, the experimental dependence clearly disagrees with Förster 1/r6 dependence. It is not yet clear what the best theoretical approach is, but any calculation must deal accurately with the excited states of bases, including strong base,base interactions and structural fluctuations, and should reflect the increase of efficiency with temperature decrease and the relative insensitivity to strandedness (single, double). Attempts to use DNA as a molecular "fiber optic" face three primary challenges. First, reasonable efficiency over more than a base or two occurs only in adenine stretches at temperatures well below freezing. Second, transfer in these adenine tracks is efficient in both directions. Third, absorption of UV light occurs randomly, making excitation at a specific site on this "fiber optic" a challenge. [source] Modes and mechanisms of speciation in pteridophytes: Implications of contrasting patterns in ferns representing temperate and tropical habitatsPLANT SPECIES BIOLOGY, Issue 3 2000Christopher H. Haufler Abstract Discovering how biological diversification results in species is one of the primary challenges facing evolutionary biologists. In the ferns, evidence indicates that dissimilar speciation modes and mechanisms may differentiate some temperate and tropical groups. The Polypodium sibiricum group contains three related diploid species that all inhabit rock outcrops in temperate forests. Although differing lettle in gross leaf morphology and joined by the distinctive morphological synapomorphy of sporangiasters, these three species have an average interspecific genetic identity developed from isozymic com-parisons of only 0.460. A likely mode of speciation is that periodic glaciation pushed Po. sibiricum populations south and, with the retreat of the glaciers, southern populations persisted, evolved diagnostic traits, and ultimately erected postzygotic barriers to interbreeding. This hypothesis follows a classic allopatric speciation model and interspecific distinctions may have been reinforced through contact mediated by subsequent ice ages. In contrast, a monophyletic group of four diploid, epiphytic Pleopeltis species centered in Mexico has an isozymically-determined average interspecific genetic identity value of 0.849. In spite of this high value, these species show greater morphological discrimination than do the Polypodium species. Although the species ranges overlap, they appear to occupy ecologically discrete habitats. These Pleopeltis species may have originated through adaptation to different ecological zones and developed individual morphologies in the process. The high interspecific genetic identity values among the Pleopeltis species suggest a relatively recent and/or rapid process. These hypotheses should be tested by further biosystematic investigations and the discovery of additional monophyletic assemblages with similar patterns of speciation. [source] |